This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 Centroamerican and Caribbean Math Olympiad, 3

Let $ABC$ an acutangle triangle with orthocenter $H$ and circumcenter $O$. Let $D$ the intersection of $AO$ and $BH$. Let $P$ be the point on $AB$ such that $PH=PD$. Prove that the points $B, D, O$ and $P$ lie on a circle.

2007 IMO Shortlist, 1

In triangle $ ABC$ the bisector of angle $ BCA$ intersects the circumcircle again at $ R$, the perpendicular bisector of $ BC$ at $ P$, and the perpendicular bisector of $ AC$ at $ Q$. The midpoint of $ BC$ is $ K$ and the midpoint of $ AC$ is $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area. [i]Author: Marek Pechal, Czech Republic[/i]

2023-24 IOQM India, 14

Let $A B C$ be a triangle in the $x y$ plane, where $B$ is at the origin $(0,0)$. Let $B C$ be produced to $D$ such that $B C: C D=1: 1, C A$ be produced to $E$ such that $C A: A E=1: 2$ and $A B$ be produced to $F$ such that $A B: B F=1: 3$. Let $G(32,24)$ be the centroid of the triangle $A B C$ and $K$ be the centroid of the triangle $D E F$. Find the length $G K$.

Kyiv City MO Seniors Round2 2010+ geometry, 2013.11.4

Let $ H $ be the intersection point of the altitudes $ AP $ and $ CQ $ of the acute-angled triangle $ ABC $. On its median $ BM $ marked points $ E $ and $ F $ so that $ \angle APE = \angle BAC $ and $ \angle CQF = \angle BCA $, and the point $ E $ lies inside the triangle $ APB $, and the point $ F $ lies inside the triangle $ CQB $. Prove that the lines $ AE $, $ CF $ and $ BH $ intersect at one point. (Vyacheslav Yasinsky)

2002 Stanford Mathematics Tournament, 3

Tags: geometry
An equilateral triangle has has sides $1$ inch long. An ant walks around the triangle maintaining a distance of $1$ inch from the triangle at all times. How far does the ant walk?

2006 Singapore Team Selection Test, 1

Tags: geometry
In the plane containing a triangle $ABC$, points $A'$, $B'$ and $C'$ distinct from the vertices of $ABC$ lie on the lines $BC$, $AC$ and $AB$ respectively such that $AA'$, $BB'$ and $CC'$ are concurrent at $G$ and $AG/GA' = BG/GB' = CG/GC'$. Prove that $G$ is the centroid of $ABC$.

1957 AMC 12/AHSME, 37

In right triangle $ ABC$, $ BC \equal{} 5$, $ AC \equal{} 12$, and $ AM \equal{} x$; $ \overline{MN} \perp \overline{AC}$, $ \overline{NP} \perp \overline{BC}$; $ N$ is on $ AB$. If $ y \equal{} MN \plus{} NP$, one-half the perimeter of rectangle $ MCPN$, then: [asy]defaultpen(linewidth(.8pt)); unitsize(2cm); pair A = origin; pair M = (1,0); pair C = (2,0); pair P = (2,0.5); pair B = (2,1); pair Q = (1,0.5); draw(A--B--C--cycle); draw(M--Q--P); label("$A$",A,SW); label("$M$",M,S); label("$C$",C,SE); label("$P$",P,E); label("$B$",B,NE); label("$N$",Q,NW);[/asy]$ \textbf{(A)}\ y \equal{} \frac {1}{2}(5 \plus{} 12) \qquad \textbf{(B)}\ y \equal{} \frac {5x}{12} \plus{} \frac {12}{5}\qquad \textbf{(C)}\ y \equal{} \frac {144 \minus{} 7x}{12}\qquad$ $ \textbf{(D)}\ y \equal{} 12\qquad \qquad\quad\,\, \textbf{(E)}\ y \equal{} \frac {5x}{12} \plus{} 6$

2010 China Second Round Olympiad, 1

Given an acute triangle whose circumcenter is $O$.let $K$ be a point on $BC$,different from its midpoint.$D$ is on the extension of segment $AK,BD$ and $AC$,$CD$and$AB$intersect at $N,M$ respectively.prove that $A,B,D,C$ are concyclic.

2008 Romania National Olympiad, 4

Tags: geometry
On the sides of triangle $ ABC$ we consider points $ C_1,C_2 \in (AB), B_1,B_2 \in (AC), A_1,A_2 \in (BC)$ such that triangles $ A_1,B_1,C_1$ and $ A_2B_2C_2$ have a common centroid. Prove that sets $ [A_1,B_1]\cap [A_2B_2], [B_1C_1]\cap[B_2C_2], [C_1A_1]\cap [C_2A_2]$ are not empty.

1998 AMC 12/AHSME, 10

A large square is divided into a small square surrounded by four congruent rectangles as shown. The perimeter of each of the congruent rectangles is 14. What is the area of the large square? [asy]unitsize(3mm); defaultpen(linewidth(.8pt)); draw((0,0)--(7,0)--(7,7)--(0,7)--cycle); draw((1,0)--(1,6)); draw((7,1)--(1,1)); draw((6,7)--(6,1)); draw((0,6)--(6,6));[/asy]$ \textbf{(A)}\ \ 49 \qquad \textbf{(B)}\ \ 64 \qquad \textbf{(C)}\ \ 100 \qquad \textbf{(D)}\ \ 121 \qquad \textbf{(E)}\ \ 196$

2022 JHMT HS, 2

Four mutually externally tangent spherical apples of radius $4$ are placed on a horizontal flat table. Then, a spherical orange of radius $3$ is placed such that it rests on all the apples. Find the distance from the center of the orange to the table.

1962 IMO, 3

Consider the cube $ABCDA'B'C'D'$ ($ABCD$ and $A'B'C'D'$ are the upper and lower bases, repsectively, and edges $AA', BB', CC', DD'$ are parallel). The point $X$ moves at a constant speed along the perimeter of the square $ABCD$ in the direction $ABCDA$, and the point $Y$ moves at the same rate along the perimiter of the square $B'C'CB$ in the direction $B'C'CBB'$. Points $X$ and $Y$ begin their motion at the same instant from the starting positions $A$ and $B'$, respectively. Determine and draw the locus of the midpionts of the segments $XY$.

2018 ELMO Shortlist, 5

Tags: geometry
Let scalene triangle $ABC$ have altitudes $AD, BE, CF$ and circumcenter $O$. The circumcircles of $\triangle ABC$ and $\triangle ADO$ meet at $P \ne A$. The circumcircle of $\triangle ABC$ meets lines $PE$ at $X \ne P$ and $PF$ at $Y \ne P$. Prove that $XY \parallel BC$. [i]Proposed by Daniel Hu[/i]

2014 Middle European Mathematical Olympiad, 8

Determine all quadruples $(x,y,z,t)$ of positive integers such that \[ 20^x + 14^{2y} = (x + 2y + z)^{zt}.\]

2023 Yasinsky Geometry Olympiad, 1

Let $BD$ and $CE$ be the altitudes of triangle $ABC$ that intersect at point $H$. Let $F$ be a point on side $AC$ such that $FH\perp CE$. The segment $FE$ intersects the circumcircle of triangle $CDE$ at the point $K$. Prove that $HK\perp EF$ . (Matthew Kurskyi)

2007 Spain Mathematical Olympiad, Problem 3

Tags: geometry
$O$ is the circumcenter of triangle $ABC$. The bisector from $A$ intersects the opposite side in point $P$. Prove that the following is satisfied: $$AP^2 + OA^2 - OP^2 = bc.$$

1967 AMC 12/AHSME, 33

Tags: ratio , geometry
[asy] fill(circle((4,0),4),grey); fill((0,0)--(8,0)--(8,-4)--(0,-4)--cycle,white); fill(circle((7,0),1),white); fill(circle((3,0),3),white); draw((0,0)--(8,0),black+linewidth(1)); draw((6,0)--(6,sqrt(12)),black+linewidth(1)); MP("A", (0,0), W); MP("B", (8,0), E); MP("C", (6,0), S); MP("D",(6,sqrt(12)), N); [/asy] In this diagram semi-circles are constructed on diameters $\overline{AB}$, $\overline{AC}$, and $\overline{CB}$, so that they are mutually tangent. If $\overline{CD} \bot \overline{AB}$, then the ratio of the shaded area to the area of a circle with $\overline{CD}$ as radius is: $\textbf{(A)}\ 1:2\qquad \textbf{(B)}\ 1:3\qquad \textbf{(C)}\ \sqrt{3}:7\qquad \textbf{(D)}\ 1:4\qquad \textbf{(E)}\ \sqrt{2}:6$

2013 Stanford Mathematics Tournament, 24

Compute the square of the distance between the incenter (center of the inscribed circle) and circumcenter (center of the circumscribed circle) of a 30-60-90 right triangle with hypotenuse of length 2.

2020 Adygea Teachers' Geometry Olympiad, 4

Tags: angle , arc , tangent , min , length , circles , geometry
A circle is inscribed in an angle with vertex $O$, touching its sides at points $M$ and $N$. On an arc $MN$ nearest to point $O$, an arbitrary point $P$ is selected. At point $P$, a tangent is drawn to the circle $P$, intersecting the sides of the angle at points $A$ and $B$. Prove that that the length of the segment $AB$ is the smallest when $P$ is its midpoint.

2009 Greece Team Selection Test, 2

Given is a triangle $ABC$ with barycenter $G$ and circumcenter $O$.The perpendicular bisectors of $GA,GB,GC$ intersect at $A_1,B_1,C_1$.Show that $O$ is the barycenter of $\triangle{A_1B_1C_1}$.

2015 South Africa National Olympiad, 1

Tags: geometry
Points $E$ and $F$ lie inside a square $ABCD$ such that the two triangles $ABF$ and $BCE$ are equilateral. Show that $DEF$ is an equilateral triangle.

2007 Today's Calculation Of Integral, 241

1.Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of a parabola $ y \equal{} ax^2 \plus{} bx \plus{} c\ (a\neq 0)$ and the line $ y \equal{} ux \plus{} v$. Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a|}{6}(\beta \minus{} \alpha )^3}$. 2. Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of parabolas $ y \equal{} ax^2 \plus{} bx \plus{} c$ and $ y \equal{} px^2 \plus{} qx \plus{} r\ (ap\neq 0)$. Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a \minus{} p|}{6}(\beta \minus{} \alpha )^3}$.

Cono Sur Shortlist - geometry, 2012.G2

Let $ABC$ be a triangle, and $M$ and $N$ variable points on $AB$ and $AC$ respectively, such that both $M$ and $N$ do not lie on the vertices, and also, $AM \times MB = AN \times NC$. Prove that the perpendicular bisector of $MN$ passes through a fixed point.

Cono Sur Shortlist - geometry, 2021.G4

Let $ABC$ be a triangle and $\Gamma$ the $A$- exscribed circle whose center is $J$ . Let $D$ and $E$ be the touchpoints of $\Gamma$ with the lines $AB$ and $AC$, respectively. Let $S$ be the area of the quadrilateral $ADJE$, Find the maximum value that $\frac{S}{AJ^2}$ has and when equality holds.

2018 Purple Comet Problems, 6

Tags: geometry
Triangle $ABC$ has $AB = AC$. Point $D$ is on side $\overline{BC}$ so that $AD = CD$ and $\angle BAD = 36^o$. Find the degree measure of $\angle BAC$.