This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 Belarus Team Selection Test, 2

Two distinct points $A$ and $B$ are marked on the left half of the parabola $y = x^2$. Consider any pair of parallel lines which pass through $A$ and $B$ and intersect the right half of the parabola at points $C$ and $D$. Let $K$ be the intersection point of the diagonals $AC$ and $BD$ of the obtained trapezoid $ABCD$. Let $M, N$ be the midpoints of the bases of $ABCD$. Prove that the difference $KM - KN$ depends only on the choice of points $A$ and $B$ but does not depend on the pair of parallel lines described above. (I. Voronovich)

1997 Singapore Team Selection Test, 1

Let $ABC$ be a triangle and let $D, E$ and $F$ be the midpoints of the sides $AB, BC$ and $CA$ respectively. Suppose that the angle bisector of $\angle BDC$ meets $BC$ at the point $M$ and the angle bisector of $\angle ADC$ meets $AC$ at the point $N$. Let $MN$ and $CD$ intersect at $O$ and let the line $EO$ meet $AC$ at $P$ and the line $FO$ meet $BC$ at $Q$. Prove that $CD = PQ$.

2013 Harvard-MIT Mathematics Tournament, 8

Let points $A$ and $B$ be on circle $\omega$ centered at $O$. Suppose that $\omega_A$ and $\omega_B$ are circles not containing $O$ which are internally tangent to $\omega$ at $A$ and $B$, respectively. Let $\omega_A$ and $\omega_B$ intersect at $C$ and $D$ such that $D$ is inside triangle $ABC$. Suppose that line $BC$ meets $\omega$ again at $E$ and let line $EA$ intersect $\omega_A$ at $F$. If $ FC \perp CD $, prove that $O$, $C$, and $D$ are collinear.

2011 Vietnam National Olympiad, 3

Let $AB$ be a diameter of a circle $(O)$ and let $P$ be any point on the tangent drawn at $B$ to $(O).$ Define $AP\cap (O)=C\neq A,$ and let $D$ be the point diametrically opposite to $C.$ If $DP$ meets $(O)$ second time in $E,$ then, [b](i)[/b] Prove that $AE, BC, PO$ concur at $M.$ [b](ii)[/b] If $R$ is the radius of $(O),$ find $P$ such that the area of $\triangle AMB$ is maximum, and calculate the area in terms of $R.$

1947 Moscow Mathematical Olympiad, 135

a) Given $5$ points on a plane, no three of which lie on one line. Prove that four of these points can be taken as vertices of a convex quadrilateral. b) Inside a square, consider a convex quadrilateral and inside the quadrilateral, take a point $A$. It so happens that no three of the $9$ points — the vertices of the square, of the quadrilateral and $A$ — lie on one line. Prove that $5$ of these points are vertices of a convex pentagon.

1997 Slovenia National Olympiad, Problem 3

Tags: ratio , geometry
In a convex quadrilateral $ABCD$ we have $\angle ADB=\angle ACD$ and $AC=CD=DB$. If the diagonals $AC$ and $BD$ intersect at $X$, prove that $\frac{CX}{BX}-\frac{AX}{DX}=1$.

1989 Czech And Slovak Olympiad IIIA, 1

Three different points $A, B, C $ lying on a circle with center $S$ and a line $p$ perpendicular to $ AS$ are given in the plane. Let's mark the intersections of the line $p$ with the lines $AB$, $AC$ as $D$ and $E$. Prove that the points $B, C, D, E$ lie on the same circle.

1986 All Soviet Union Mathematical Olympiad, 420

The point $M$ belongs to the side $[AC]$ of the acute-angle triangle $ABC$. Two circles are circumscribed around triangles $ABM$ and $BCM$ . What $M$ position corresponds to the minimal area of those circles intersection?

2021 Nigerian Senior MO Round 3, 2

Tags: geometry
Let $B,C,D,E$ be four pairwise distinct collinear points and let $A$ be a point not on line $BC$. Now let the circumcircle of $ABC$ meet $AD$ and $AE$ respectively again at $F$ and $G$ Show that $DEFG$ is cyclic if and only if $AB=AC$

2008 China Team Selection Test, 1

Prove that in a plane, arbitrary $ n$ points can be overlapped by discs that the sum of all the diameters is less than $ n$, and the distances between arbitrary two are greater than $ 1$. (where the distances between two discs that have no common points are defined as that the distances between its centers subtract the sum of its radii; the distances between two discs that have common points are zero)

Mathley 2014-15, 5

Triangle $ABC$ has incircle $(I)$ and $P,Q$ are two points in the plane of the triangle. Let $QA,QB,QC$ meet $BA,CA,AB$ respectively at $D,E,F$. The tangent at $D$, other than $BC$, of the circle $(I)$ meets $PA$ at $X$. The points $Y$ and $Z$ are defined in the same manner. The tangent at $X$, other than $XD$, of the circle $(I)$ meets $ (I)$ at $U$. The points $V,W$ are defined in the same way. Prove that three lines $(AU,BV,CW)$ are concurrent. Tran Quang Hung, Dean of the Faculty of Science, Thanh Xuan, Hanoi.

2009 Sharygin Geometry Olympiad, 4

Given regular $17$-gon $A_1 ... A_{17}$. Prove that two triangles formed by lines $A_1A_4, A_2A_{10}, A_{13}A_{14}$ and $A_2A_3, A_4A_6 A_{14}A_{15} $ are equal. (N.Beluhov)

2010 Iran MO (3rd Round), 1

Prove that the group of orientation-preserving symmetries of the cube is isomorphic to $S_4$ (the group of permutations of $\{1,2,3,4\}$).(20 points)

2004 Abels Math Contest (Norwegian MO), 3

Tags: area , geometry , cyclic
In a quadrilateral $ABCD$ with $\angle A = 60^o, \angle B = 90^o, \angle C = 120^o$, the point $M$ of intersection of the diagonals satisfies $BM = 1$ and $MD = 2$. (a) Prove that the vertices of $ABCD$ lie on a circle and find the radius of that circle. (b) Find the area of quadrilateral $ABCD$.

2018 AMC 10, 15

Tags: geometry
A closed box with a square base is to be wrapped with a square sheet of wrapping paper. The box is centered on the wrapping paper with the vertices of the base lying on the midlines of the square sheet of paper, as shown in the figure on the left. The four corners of the wrapping paper are to be folded up over the sides and brought together to meet at the center of the top of the box, point $A$ in the figure on the right. The box has base length $w$ and height $h$. What is the area of the sheet of wrapping paper? [asy]size(270pt); defaultpen(fontsize(10pt)); filldraw(((3,3)--(-3,3)--(-3,-3)--(3,-3)--cycle),lightgrey); dot((-3,3)); label("$A$",(-3,3),NW); draw((1,3)--(-3,-1),dashed+linewidth(.5)); draw((-1,3)--(3,-1),dashed+linewidth(.5)); draw((-1,-3)--(3,1),dashed+linewidth(.5)); draw((1,-3)--(-3,1),dashed+linewidth(.5)); draw((0,2)--(2,0)--(0,-2)--(-2,0)--cycle,linewidth(.5)); draw((0,3)--(0,-3),linetype("2.5 2.5")+linewidth(.5)); draw((3,0)--(-3,0),linetype("2.5 2.5")+linewidth(.5)); label('$w$',(-1,-1),SW); label('$w$',(1,-1),SE); draw((4.5,0)--(6.5,2)--(8.5,0)--(6.5,-2)--cycle); draw((4.5,0)--(8.5,0)); draw((6.5,2)--(6.5,-2)); label("$A$",(6.5,0),NW); dot((6.5,0)); [/asy] $\textbf{(A) } 2(w+h)^2 \qquad \textbf{(B) } \frac{(w+h)^2}2 \qquad \textbf{(C) } 2w^2+4wh \qquad \textbf{(D) } 2w^2 \qquad \textbf{(E) } w^2h $

PEN P Problems, 2

Show that each integer $n$ can be written as the sum of five perfect cubes (not necessarily positive).

2009 China Girls Math Olympiad, 7

On a $ 10 \times 10$ chessboard, some $ 4n$ unit squares are chosen to form a region $ \mathcal{R}.$ This region $ \mathcal{R}$ can be tiled by $ n$ $ 2 \times 2$ squares. This region $ \mathcal{R}$ can also be tiled by a combination of $ n$ pieces of the following types of shapes ([i]see below[/i], with rotations allowed). Determine the value of $ n.$

2012 NIMO Summer Contest, 5

Tags: geometry , ratio
In the diagram below, three squares are inscribed in right triangles. Their areas are $A$, $M$, and $N$, as indicated in the diagram. If $M = 5$ and $N = 12$, then $A$ can be expressed as $a + b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and $c$ is not divisible by the square of any prime. Compute $a + b + c$. [asy] size(250); defaultpen (linewidth (0.7) + fontsize (10)); pair O = origin, A = (1, 1), B = (4/3, 1/3), C = (2/3, 5/3), P = (3/2, 0), Q = (0,3); draw (P--O--Q--cycle^^(0, 5/3)--C--(2/3,1)^^(0,1)--A--(1,0)^^(1,1/3)--B--(4/3,0)); label("$A$", (.5,.5)); label("$M$", (7/6, 1/6)); label("$N$", (1/3, 4/3));[/asy] [i]Proposed by Aaron Lin[/i]

1998 All-Russian Olympiad Regional Round, 11.2

Circle $S$ with center $O$ and circle $S'$ intersect at points $A$ and $B$. Point $C$ is taken on the arc of a circle $S$ lying inside $S'$. Denote the intersection points of $AC$ and $BC$ with $S'$, other than $A$ and $B$, as $E$ and $D$, respectively. Prove that lines $DE$ and $OC$ are perpendicular.

2023 ISL, G8

Let $ABC$ be an equilateral triangle. Let $A_1,B_1,C_1$ be interior points of $ABC$ such that $BA_1=A_1C$, $CB_1=B_1A$, $AC_1=C_1B$, and $$\angle BA_1C+\angle CB_1A+\angle AC_1B=480^\circ$$ Let $BC_1$ and $CB_1$ meet at $A_2,$ let $CA_1$ and $AC_1$ meet at $B_2,$ and let $AB_1$ and $BA_1$ meet at $C_2.$ Prove that if triangle $A_1B_1C_1$ is scalene, then the three circumcircles of triangles $AA_1A_2, BB_1B_2$ and $CC_1C_2$ all pass through two common points. (Note: a scalene triangle is one where no two sides have equal length.) [i]Proposed by Ankan Bhattacharya, USA[/i]

2012 Romanian Masters In Mathematics, 6

Let $ABC$ be a triangle and let $I$ and $O$ denote its incentre and circumcentre respectively. Let $\omega_A$ be the circle through $B$ and $C$ which is tangent to the incircle of the triangle $ABC$; the circles $\omega_B$ and $\omega_C$ are defined similarly. The circles $\omega_B$ and $\omega_C$ meet at a point $A'$ distinct from $A$; the points $B'$ and $C'$ are defined similarly. Prove that the lines $AA',BB'$ and $CC'$ are concurrent at a point on the line $IO$. [i](Russia) Fedor Ivlev[/i]

2021 Malaysia IMONST 2, 3

Given a cube. On each edge of the cube, we write a number, either $1$ or $-1$. For each face of the cube, we multiply the four numbers on the edges of this face, and write the product on this face. Finally, we add all the eighteen numbers that we wrote down on the edges and face of the cube. What is the smallest possible sum that we can get?

2011 Today's Calculation Of Integral, 714

Find the area enclosed by the graph of $a^2x^4=b^2x^2-y^2\ (a>0,\ b>0).$

2020 Novosibirsk Oral Olympiad in Geometry, 7

The segments connecting the interior point of a convex non-sided $n$-gon with its vertices divide the $n$-gon into $n$ congruent triangles. For what is the smallest $n$ that is possible?

Estonia Open Junior - geometry, 2003.2.4

Tags: geometry , square , area
Consider the points $A_1$ and $A_2$ on the side $AB$ of the square $ABCD$ taken in such a way that $|AB| = 3 |AA_1| $ and $|AB| = 4 |A_2B|$, similarly consider points $B_1$ and $B_2, C_1$ and $C_2, D_1$ and $D_2$ respectively on the sides $BC$, $CD$ and $DA$. The intersection point of straight lines $D_2A_1$ and $A_2B_1$ is $E$, the intersection point of straight lines $A_2B_1$ and $B_2C_1$ is $F$, the intersection point of straight lines $B_2C_1$ and $C_2D_1$ is $G$ and the intersection point of straight lines $C_2D_1$ and $D_2A_1$ is $H$. Find the area of the square $EFGH$, knowing that the area of $ABCD$ is $1$.