Found problems: 25757
1992 Swedish Mathematical Competition, 5
A triangle has sides $a, b, c$ with longest side $c$, and circumradius $R$. Show that if $a^2 + b^2 = 2cR$, then the triangle is right-angled.
2001 Stanford Mathematics Tournament, 15
Let $ABC$ be an isosceles triangle with $\angle{ABC} = \angle{ACB} = 80^\circ$. Let $D$ be a point on $AB$ such that $\angle{DCB} = 60^\circ$ and $E$ be a point on $AC$ such that $\angle{ABE} = 30^\circ$. Find $\angle{CDE}$ in degrees.
2014 Czech-Polish-Slovak Match, 1
Prove that if the positive real numbers $a, b, c$ satisfy the equation
\[a^4 + b^4 + c^4 + 4a^2b^2c^2 = 2 (a^2b^2 + a^2c^2 + b^2c^2),\]
then there is a triangle $ABC$ with internal angles $\alpha, \beta, \gamma$ such that
\[\sin \alpha = a, \qquad \sin \beta = b, \qquad \sin \gamma= c.\]
2013 Bogdan Stan, 1
$ M,N,P,Q,R,S $ are the midpoints of the sides $ AB,BC,CD,DE,EF,FA $ of a convex hexagon $ ABCDEF. $
[b]a)[/b] Show that with the segments $ MQ,NR,PS, $ it can be formed a triangle.
[b]b)[/b] Show that a triangle formed with the segments $ MQ,NR,PS $ is right if and only if ether $ MQ\perp NR $ or $ MQ\perp PS $ or $ PS\perp RN. $
[i]Vasile Pop[/i]
2014 Contests, 2
Consider two circles of radius one, and let $O$ and $O'$ denote their centers. Point $M$ is selected on either circle. If $OO' = 2014$, what is the largest possible area of triangle $OMO'$?
[i]Proposed by Evan Chen[/i]
1991 Federal Competition For Advanced Students, P2, 1
Consider a convex solid $ K$ in space and two parallel planes $ \epsilon _1$ and $ \epsilon _2$ on the distance $ 1$ tangent to $ K$. A plane $ \epsilon$ between $ \epsilon _1$ and $ \epsilon _2$ is on the distance $ d_1$ from $ \epsilon _1$. Find all $ d_1$ such that the part of $ K$ between $ \epsilon _1$ and $ \epsilon$ always has a volume not exceeding half the volume of $ K$.
2019 OMMock - Mexico National Olympiad Mock Exam, 6
Let $ABC$ be a scalene triangle with circumcenter $O$, and let $D$ and $E$ be points inside angle $\measuredangle BAC$ such that $A$ lies on line $DE$, and $\angle ADB=\angle CBA$ and $\angle AEC=\angle BCA$. Let $M$ be the midpoint of $BC$ and $K$ be a point such that $OK$ is perpendicular to $AO$ and $\angle BAK=\angle MAC$. Finally, let $P$ be the intersection of the perpendicular bisectors of $BD$ and $CE$. Show that $KO=KP$.
[i]Proposed by Victor Domínguez[/i]
Novosibirsk Oral Geo Oly VIII, 2020.7
You are given a quadrilateral $ABCD$. It is known that $\angle BAC = 30^o$, $\angle D = 150^o$ and, in addition, $AB = BD$. Prove that $AC$ is the bisector of angle $C$.
Kyiv City MO Juniors Round2 2010+ geometry, 2017.8.2
Triangle $ABC$ is right-angled and isosceles with a right angle at the vertex $C$. On rays $CB$ on vertex $B$ is selected point F, on rays $BA$ on vertex $A$ is selected point G so that $AG = BF.$ The ray $GD$ is drawn so that it intersects with ray $AC$ at point $D$ with $\angle FGD = 45^o$. Find $\angle FDG$.
(Bogdan Rublev)
2022 Turkey EGMO TST, 1
Given an acute angle triangle $ABC$ with circumcircle $\Gamma$ and circumcenter $O$. A point $P$ is taken on the line $BC$ but not on $[BC]$. Let $K$ be the reflection of the second intersection of the line $AP$ and $\Gamma$ with respect to $OP$. If $M$ is the intersection of the lines $AK$ and $OP$, prove that $\angle OMB+\angle OMC=180^{\circ}$.
LMT Team Rounds 2010-20, B15
Let $\vartriangle AMO$ be an equilateral triangle. Let $U$ and $G$ lie on side $AM$, and let $S$ and $N$ lie on side $AO$ such that $AU =UG = GM$ and $AS = SN = NO$. Find the value of $\frac{[MONG]}{[U S A]}$
1984 AMC 12/AHSME, 4
A rectangle intersects a circle as shown: $AB=4$, $BC=5$, and $DE=3$. Then $EF$ equals:
[asy]size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair D=origin, E=(3,0), F=(10,0), G=(12,0), H=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F);
draw(D--G--H--A--cycle);
draw(Circle(O, abs(O-C)));
label("$A$", A, NW);
label("$B$", B, NW);
label("$C$", C, NE);
label("$D$", D, SW);
label("$E$", E, SE);
label("$F$", F, SW);
label("4", (2,0.85), N);
label("3", D--E, S);
label("5", (6.5,0.85), N);
[/asy]
$\mathbf{(A)}\; 6\qquad \mathbf{(B)}\; 7\qquad \mathbf{(C)}\; \frac{20}3\qquad \mathbf{(D)}\; 8\qquad \mathbf{(E)}\; 9$
2014 National Olympiad First Round, 29
Let $ABC$ be a triangle such that $|AB|=13 , |BC|=12$ and $|CA|=5$. Let the angle bisectors of $A$ and $B$ intersect at $I$ and meet the opposing sides at $D$ and $E$, respectively. The line passing through $I$ and the midpoint of $[DE]$ meets $[AB]$ at $F$. What is $|AF|$?
$
\textbf{(A)}\ \dfrac{3}{2}
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ \dfrac{5}{2}
\qquad\textbf{(D)}\ 3
\qquad\textbf{(E)}\ \dfrac{7}{2}
$
2020 Estonia Team Selection Test, 2
Let $M$ be the midpoint of side BC of an acute-angled triangle $ABC$. Let $D$ and $E$ be the center of the excircle of triangle $AMB$ tangent to side $AB$ and the center of the excircle of triangle $AMC$ tangent to side $AC$, respectively. The circumscribed circle of triangle $ABD$ intersects line$ BC$ for the second time at point $F$, and the circumcircle of triangle $ACE$ is at point $G$. Prove that $| BF | = | CG|$.
2013 ELMO Problems, 4
Triangle $ABC$ is inscribed in circle $\omega$. A circle with chord $BC$ intersects segments $AB$ and $AC$ again at $S$ and $R$, respectively. Segments $BR$ and $CS$ meet at $L$, and rays $LR$ and $LS$ intersect $\omega$ at $D$ and $E$, respectively. The internal angle bisector of $\angle BDE$ meets line $ER$ at $K$. Prove that if $BE = BR$, then $\angle ELK = \tfrac{1}{2} \angle BCD$.
[i]Proposed by Evan Chen[/i]
1976 IMO Longlists, 27
In a plane three points $P,Q,R,$ not on a line, are given. Let $k, l, m$ be positive numbers. Construct a triangle $ABC$ whose sides pass through $P, Q,$ and $R$ such that
$P$ divides the segment $AB$ in the ratio $1 : k$,
$Q$ divides the segment $BC$ in the ratio $1 : l$, and
$R$ divides the segment $CA$ in the ratio $1 : m.$
2017 India IMO Training Camp, 1
In an acute triangle $ABC$, points $D$ and $E$ lie on side $BC$ with $BD<BE$. Let $O_1, O_2, O_3, O_4, O_5, O_6$ be the circumcenters of triangles $ABD, ADE, AEC, ABE, ADC, ABC$, respectively. Prove that $O_1, O_3, O_4, O_5$ are con-cyclic if and only if $A, O_2, O_6$ are collinear.
2025 Romanian Master of Mathematics, 5
Let triangle $ABC$ be an acute triangle with $AB<AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. Let $\Gamma$ be the circle $BOC$. The line $AO$ and the circle of radius $AO$ centered at $A$ cross $\Gamma$ at $A’$ and $F$, respectively. Prove that $\Gamma$ , the circle on diameter $AA’$ and circle $AFH$ are concurrent.
[i]Proposed by Romania, Radu-Andrew Lecoiu[/i]
1998 North Macedonia National Olympiad, 1
Let $ABCDE$ be a convex pentagon with $AB = BC =CA$ and $CD = DE = EC$.
Let $T$ be the centroid of $\vartriangle ABC$, and $N$ be the midpoint of $AE$. Compute $\angle NT D$
2014 Online Math Open Problems, 21
Consider a sequence $x_1,x_2,\cdots x_{12}$ of real numbers such that $x_1=1$ and for $n=1,2,\dots,10$ let \[ x_{n+2}=\frac{(x_{n+1}+1)(x_{n+1}-1)}{x_n}. \] Suppose $x_n>0$ for $n=1,2,\dots,11$ and $x_{12}=0$. Then the value of $x_2$ can be written as $\frac{\sqrt{a}+\sqrt{b}}{c}$ for positive integers $a,b,c$ with $a>b$ and no square dividing $a$ or $b$. Find $100a+10b+c$.
[i]Proposed by Michael Kural[/i]
Novosibirsk Oral Geo Oly VII, 2023.1
Let's call a corner the figure that is obtained by removing one cell from a $2 \times 2$ square. Cut the $6 \times 6$ square into corners so that no two of them form a $2 \times 3$ or $3 \times 2$ rectangle together.
2013 China Team Selection Test, 3
A point $(x,y)$ is a [i]lattice point[/i] if $x,y\in\Bbb Z$. Let $E=\{(x,y):x,y\in\Bbb Z\}$. In the coordinate plane, $P$ and $Q$ are both sets of points in and on the boundary of a convex polygon with vertices on lattice points. Let $T=P\cap Q$. Prove that if $T\ne\emptyset$ and $T\cap E=\emptyset$, then $T$ is a non-degenerate convex quadrilateral region.
2010 Sharygin Geometry Olympiad, 7
Given triangle $ABC$. Lines $AL_a$ and $AM_a$ are the internal and the external bisectrix of angle $A$. Let $\omega_a$ be the reflection of the circumcircle of $\triangle AL_aM_a$ in the midpoint of $BC$. Circle $\omega_b$ is defined similarly. Prove that $\omega_a$ and $\omega_b$ touch if and only if $\triangle ABC$ is right-angled.
2019 Korea National Olympiad, 2
Triangle $ABC$ is an scalene triangle. Let $I$ the incenter, $\Omega$ the circumcircle, $E$ the $A$-excenter of triangle $ABC$. Let $\Gamma$ the circle centered at $E$ and passes $A$. $\Gamma$ and $\Omega$ intersect at point $D(\neq A)$, and the perpendicular line of $BC$ which passes $A$ meets $\Gamma$ at point $K(\neq A)$. $L$ is the perpendicular foot from $I$ to $AC$. Now if $AE$ and $DK$ intersects at $F$, prove that $BE\cdot CI=2\cdot CF\cdot CL$.
1999 IMO Shortlist, 6
Two circles $\Omega_{1}$ and $\Omega_{2}$ touch internally the circle $\Omega$ in M and N and the center of $\Omega_{2}$ is on $\Omega_{1}$. The common chord of the circles $\Omega_{1}$ and $\Omega_{2}$ intersects $\Omega$ in $A$ and $B$. $MA$ and $MB$ intersects $\Omega_{1}$ in $C$ and $D$. Prove that $\Omega_{2}$ is tangent to $CD$.