Found problems: 25757
2006 Poland - Second Round, 2
Point $C$ is a midpoint of $AB$. Circle $o_1$ which passes through $A$ and $C$ intersect circle $o_2$ which passes through $B$ and $C$ in two different points $C$ and $D$. Point $P$ is a midpoint of arc $AD$ of circle $o_1$ which doesn't contain $C$. Point $Q$ is a midpoint of arc $BD$ of circle $o_2$ which doesn't contain $C$. Prove that $PQ \perp CD$.
2016 PUMaC Geometry A, 5
Let $D, E$, and $F$ respectively be the feet of the altitudes from $A, B$, and $C$ of acute triangle $\vartriangle ABC$ such that $AF = 28, FB = 35$ and $BD = 45$. Let $P$ be the point on segment $BE$ such that $AP = 42$. Find the length of $CP$.
1966 Spain Mathematical Olympiad, 3
Given a regular pentagon, consider the convex pentagon limited by its diagonals. You are asked to calculate:
a) The similarity relation between the two convex pentagons.
b) The relationship of their areas.
c) The ratio of the homothety that transforms the first into the second.
2019 Taiwan APMO Preliminary Test, P1
In $\triangle ABC$, $\angle B=90^\circ$, segment $AB>BC$. Now we have a $\triangle A_iBC(i=1,2,...,n)$ which is similiar to $\triangle ABC$ (the vertexs of them might not correspond). Find the maximum value of $n+2018$.
2021 Spain Mathematical Olympiad, 6
Let $ABC$ be a triangle with $AB \neq AC$, let $I$ be its incenter, $\gamma$ its inscribed circle and $D$ the midpoint of $BC$. The tangent to $\gamma$ from $D$ different to $BC$ touches $\gamma$ in $E$. Prove that $AE$ and $DI$ are parallel.
1962 Miklós Schweitzer, 9
Find the minimum possible sum of lengths of edges of a prism all of whose edges are tangent of a unit sphere. [Muller-Pfeiffer].
2019 Taiwan TST Round 1, 6
Given a triangle $ \triangle ABC $. Denote its incenter and orthocenter by $ I, H $, respectively. If there is a point $ K $ with $$ AH+AK = BH+BK = CH+CK $$ Show that $ H, I, K $ are collinear.
[i]Proposed by Evan Chen[/i]
2003 JBMO Shortlist, 3
Let $G$ be the centroid of triangle $ABC$, and $A'$ the symmetric of $A$ wrt $C$. Show that $G, B, C, A'$ are concyclic if and only if $GA \perp GC$.
2008 AMC 10, 23
A rectangular floor measures $ a$ by $ b$ feet, where $ a$ and $ b$ are positive integers with $ b > a$. An artist paints a rectangle on the floor with the sides of the rectangle parallel to the sides of the floor. The unpainted part of the floor forms a border of width $ 1$ foot around the painted rectangle and occupies half of the area of the entire floor. How many possibilities are there for the ordered pair $ (a,b)$?
$ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$
1994 Brazil National Olympiad, 2
Given any convex polygon, show that there are three consecutive vertices such that the polygon lies inside the circle through them.
2007 Harvard-MIT Mathematics Tournament, 7
Convex quadrilateral $ABCD$ has sides $AB=BC=7$, $CD=5$, and $AD=3$. Given additionally that $m\angle ABC=60^\circ$, find $BD$.
2020 Kosovo Team Selection Test, 3
Let $ABCD$ be a cyclic quadrilateral with center $O$ such that $BD$ bisects $AC.$ Suppose that the angle bisector of $\angle ABC$ intersects the angle bisector of $\angle ADC$ at a single point $X$ different than $B$ and $D.$ Prove that the line passing through the circumcenters of triangles $XAC$ and $XBD$ bisects the segment $OX.$
[i]Proposed by Viktor Ahmeti and Leart Ajvazaj, Kosovo[/i]
Estonia Open Junior - geometry, 2004.1.2
Diameter $AB$ is drawn to a circle with radius $1$. Two straight lines $s$ and $t$ touch the circle at points $A$ and $B$, respectively. Points $P$ and $Q$ are chosen on the lines $s$ and $t$, respectively, so that the line $PQ$ touches the circle. Find the smallest possible area of the quadrangle $APQB$.
MMATHS Mathathon Rounds, 2015
[u]Round 1[/u]
[b]p1.[/b] If this mathathon has $7$ rounds of $3$ problems each, how many problems does it have in total? (Not a trick!)
[b]p2.[/b] Five people, named $A, B, C, D,$ and $E$, are standing in line. If they randomly rearrange themselves, what’s the probability that nobody is more than one spot away from where they started?
[b]p3.[/b] At Barrios’s absurdly priced fish and chip shop, one fish is worth $\$13$, one chip is worth $\$5$. What is the largest integer dollar amount of money a customer can enter with, and not be able to spend it all on fish and chips?
[u]Round 2[/u]
[b]p4.[/b] If there are $15$ points in $4$-dimensional space, what is the maximum number of hyperplanes that these points determine?
[b]p5.[/b] Consider all possible values of $\frac{z_1 - z_2}{z_2 - z_3} \cdot \frac{z_1 - z_4}{z_2 - z_4}$ for any distinct complex numbers $z_1$, $z_2$, $z_3$, and $z_4$. How many complex numbers cannot be achieved?
[b]p6.[/b] For each positive integer $n$, let $S(n)$ denote the number of positive integers $k \le n$ such that $gcd(k, n) = gcd(k + 1, n) = 1$. Find $S(2015)$.
[u]Round 3 [/u]
[b]p7.[/b] Let $P_1$, $P_2$,$...$, $P_{2015}$ be $2015$ distinct points in the plane. For any $i, j \in \{1, 2, ...., 2015\}$, connect $P_i$ and $P_j$ with a line segment if and only if $gcd(i - j, 2015) = 1$. Define a clique to be a set of points such that any two points in the clique are connected with a line segment. Let $\omega$ be the unique positive integer such that there exists a clique with $\omega$ elements and such that there does not exist a clique with $\omega + 1$ elements. Find $\omega$.
[b]p8.[/b] A Chinese restaurant has many boxes of food. The manager notices that
$\bullet$ He can divide the boxes into groups of $M$ where $M$ is $19$, $20$, or $21$.
$\bullet$ There are exactly $3$ integers $x$ less than $16$ such that grouping the boxes into groups of $x$ leaves $3$ boxes left over.
Find the smallest possible number of boxes of food.
[b]p9.[/b] If $f(x) = x|x| + 2$, then compute $\sum^{1000}_{k=-1000} f^{-1}(f(k) + f(-k) + f^{-1}(k))$.
[u]Round 4 [/u]
[b]p10.[/b] Let $ABC$ be a triangle with $AB = 13$, $BC = 20$, $CA = 21$. Let $ABDE$, $BCFG$, and $CAHI$ be squares built on sides $AB$, $BC$, and $CA$, respectively such that these squares are outside of $ABC$. Find the area of $DEHIFG$.
[b]p11.[/b] What is the sum of all of the distinct prime factors of $7783 = 6^5 + 6 + 1$?
[b]p12.[/b] Consider polyhedron $ABCDE$, where $ABCD$ is a regular tetrahedron and $BCDE$ is a regular tetrahedron. An ant starts at point $A$. Every time the ant moves, it walks from its current point to an adjacent point. The ant has an equal probability of moving to each adjacent point. After $6$ moves, what is the probability the ant is back at point $A$?
PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2782011p24434676]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Kyiv City MO Juniors 2003+ geometry, 2021.8.4
Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and $PM \perp BM$. Prove that $\angle ABM = \angle MBP$.
(Mikhail Standenko)
1996 Austrian-Polish Competition, 2
A convex hexagon $ ABCDEF$ satisfies the following conditions:
1) $ AB\parallel DE$, $ BC\parallel EF$, and $ CD\parallel FA$.
2) The distances between these pairs of parallel lines are the same.
3) $ \angle FAB \equal{} \angle CDE \equal{} 90^\circ$
Prove that the diagonals $ BE$ and $ CF$ of the hexagon intersect with angle $ 45$ degrees.
$ \bullet$ Thank you dear [b]Babis Stergiou[/b] for your translation. :P
2013 IPhOO, 9
Bob, a spherical person, is floating around peacefully when Dave the giant orange fish launches him straight up 23 m/s with his tail. If Bob has density 100 $\text{kg/m}^3$, let $f(r)$ denote how far underwater his centre of mass plunges underwater once he lands, assuming his centre of mass was at water level when he's launched up. Find $\lim_{r\to0} \left(f(r)\right) $. Express your answer is meters and round to the nearest integer. Assume the density of water is 1000 $\text{kg/m}^3$.
[i](B. Dejean, 6 points)[/i]
1984 AMC 12/AHSME, 8
Figure $ABCD$ is a trapezoid with $AB || DC, AB = 5, BC = 3 \sqrt 2, \measuredangle BCD = 45^\circ$, and $\measuredangle CDA = 60^\circ$. The length of $DC$ is
$\textbf{(A) }7 + \frac{2}{3} \sqrt{3}\qquad
\textbf{(B) }8\qquad
\textbf{(C) }9 \frac{1}{2}\qquad
\textbf{(D) }8 + \sqrt 3\qquad
\textbf{(E) }8 + 3 \sqrt 3$
2014 Bundeswettbewerb Mathematik, 2
The $100$ vertices of a prism, whose base is a $50$-gon, are labeled with numbers $1, 2, 3, \ldots, 100$ in any order. Prove that there are two vertices, which are connected by an edge of the prism, with labels differing by not more than $48$.
Note: In all the triangles the three vertices do not lie on a straight line.
2002 India IMO Training Camp, 4
Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Show that there exist points $D$, $E$, and $F$ on sides $BC$, $CA$, and $AB$ respectively such that \[ OD + DH = OE + EH = OF + FH\] and the lines $AD$, $BE$, and $CF$ are concurrent.
1998 National High School Mathematics League, 8
Complex number $z=\cos\theta+\text{i}\sin\theta(0\leq\theta\leq\pi)$. Points that three complex numbers $z,(1+\text{i})z,2\overline{z}$ refer to on complex plane are $P,Q,R$. When $P,Q,R$ are not collinear, $PQSR$ is a parallelogram. The longest distance between $S$ and the original point is________.
2008 China Team Selection Test, 1
Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.
2006 Irish Math Olympiad, 2
$ABC$ is a triangle with points $D$, $E$ on $BC$ with $D$ nearer $B$; $F$, $G$ on $AC$, with $F$ nearer $C$; $H$, $K$ on $AB$, with $H$ nearer $A$. Suppose that $AH=AG=1$, $BK=BD=2$, $CE=CF=4$, $\angle B=60^\circ$ and that $D$, $E$, $F$, $G$, $H$ and $K$ all lie on a circle. Find the radius of the incircle of triangle $ABC$.
2018 India Regional Mathematical Olympiad, 1
Let $ABC$ be an acute angled triangle and let $D$ be an interior point of the segment $BC$. Let the circumcircle of $ACD$ intersect $AB$ at $E$ ($E$ between $A$ and $B$) and let circumcircle of $ABD$ intersect $AC$ at $F$ ($F$ between $A$ and $C$). Let $O$ be the circumcenter of $AEF$. Prove that $OD$ bisects $\angle EDF$.
2025 Benelux, 3
Let $ABC$ be a triangle with incentre $I$ and circumcircle $\Omega$. Let $D, E, F$ be the midpoints of the arcs $\stackrel{\frown}{BC}, \stackrel{\frown}{CA}, \stackrel{\frown}{AB}$ of $\Omega$ not containing $A, B, C$ respectively. Let $D'$ be the point of $\Omega$ diametrically opposite to $D$. Show that $I, D'$ and the midpoint $M$ of $EF$ lie on a line.