Found problems: 25757
1994 ITAMO, 4
Let $ABC$ be a triangle contained in one of the halfplanes determined by a line $r$. Points $A',B',C'$ are the reflections of $A,B,C$ in $r,$ respectively. Consider the line through $A'$ parallel to $BC$, the line through $B'$ parallel to $AC$ and the line through $C'$ parallel to $AB$. Show that these three lines have a common point.
1998 Mexico National Olympiad, 2
Rays $l$ and $m$ forming an angle of $a$ are drawn from the same point. Let $P$ be a fixed point on $l$. For each circle $C$ tangent to $l$ at $P$ and intersecting $m$ at $Q$ and $R$, let $T$ be the intersection point of the bisector of angle $QPR$ with $C$. Describe the locus of $T$ and justify your answer.
1999 Harvard-MIT Mathematics Tournament, 9
A regular tetrahedron has two vertices on the body diagonal of a cube with side length $12$. The other two vertices lie on one of the face diagonals not intersecting that body diagonal. Find the side length of the tetrahedron.
2009 Estonia Team Selection Test, 3
Find all natural numbers $n$ for which there exists a convex polyhedron satisfying the following conditions:
(i) Each face is a regular polygon.
(ii) Among the faces, there are polygons with at most two different numbers of edges.
(iii) There are two faces with common edge that are both $n$-gons.
2018 Harvard-MIT Mathematics Tournament, 10
Let $n$ and $m$ be positive integers in the range $[1, 10^{10}]$. Let $R$ be the rectangle with corners at $(0, 0), (n, 0), (n, m), (0, m)$ in the coordinate plane. A simple non-self-intersecting quadrilateral with vertices at integer coordinates is called [i]far-reaching[/i] if each of its vertices lie on or inside $R$, but each side of $R$ contains at least one vertex of the quadrilateral. Show that there is a far-reaching quadrilateral with area at most $10^6$.
2011 Postal Coaching, 3
Construct a triangle, by straight edge and compass, if the three points where the extensions of the medians intersect the circumcircle of the triangle are given.
Mid-Michigan MO, Grades 7-9, 2010
[b]p1.[/b] Find the smallest whole number $n \ge 2$ such that the product $(2^2 - 1)(3^2 - 1) ... (n^2 - 1)$ is the square of a whole number.
[b]p2.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region?
[img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img]
[b]p3.[/b] Three cars are racing: a Ford $[F]$, a Toyota $[T]$, and a Honda $[H]$. They began the race with $F$ first, then $T$, and $H$ last. During the race, $F$ was passed a total of $3$ times, $T$ was passed $5$ times, and $H$ was passed $8$ times. In what order did the cars finish?
[b]p4.[/b] There are $11$ big boxes. Each one is either empty or contains $8$ medium-sized boxes inside. Each medium box is either empty or contains $8$ small boxes inside. All small boxes are empty. Among all the boxes, there are a total of $102$ empty boxes. How many boxes are there altogether?
[b]p5.[/b] Ann, Mary, Pete, and finally Vlad eat ice cream from a tub, in order, one after another. Each eats at a constant rate, each at his or her own rate. Each eats for exactly the period of time that it would take the three remaining people, eating together, to consume half of the tub. After Vlad eats his portion there is no more ice cream in the tube. How many times faster would it take them to consume the tub if they all ate together?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2000 Finnish National High School Mathematics Competition, 1
Two circles are externally tangent at the point $A$. A common tangent of the circles meets one circle at the point $B$ and another at the point $C$ ($B \ne C)$. Line segments $BD$ and $CE$ are diameters of the circles. Prove that the points $D, A$ and $C$ are collinear.
2009 Tuymaada Olympiad, 3
In a cyclic quadrilateral $ ABCD$ the sides $ AB$ and $ AD$ are equal, $ CD>AB\plus{}BC$. Prove that $ \angle ABC>120^\circ$.
2011 Romania National Olympiad, 4
Consider $\vartriangle ABC$ where $\angle ABC= 60 ^o$. Points $M$ and $D$ are on the sides $(AC)$, respectively $(AB)$, such that $\angle BCA = 2 \angle MBC$, and $BD = MC$. Determine $\angle DMB$.
1997 Abels Math Contest (Norwegian MO), 2a
Let $P$ be an interior point of an equilateral triangle $ABC$, and let $Q,R,S$ be the feet of perpendiculars from $P$ to $AB,BC,CA$, respectively. Show that the sum $PQ+PR+PS$ is independent of the choice of $P$.
2005 Romania National Olympiad, 3
Let the $ABCA'B'C'$ be a regular prism. The points $M$ and $N$ are the midpoints of the sides $BB'$, respectively $BC$, and the angle between the lines $AB'$ and $BC'$ is of $60^\circ$. Let $O$ and $P$ be the intersection of the lines $A'C$ and $AC'$, with respectively $B'C$ and $C'N$.
a) Prove that $AC' \perp (OPM)$;
b) Find the measure of the angle between the line $AP$ and the plane $(OPM)$.
[i]Mircea Fianu[/i]
1996 Swedish Mathematical Competition, 4
The angles at $A,B,C,D,E$ of a pentagon $ABCDE$ inscribed in a circle form an increasing sequence. Show that the angle at $C$ is greater than $\pi/2$, and that this lower bound cannot be improved.
2008 Sharygin Geometry Olympiad, 4
(F.Nilov, A.Zaslavsky) Let $ CC_0$ be a median of triangle $ ABC$; the perpendicular bisectors to $ AC$ and $ BC$ intersect $ CC_0$ in points $ A_c$, $ B_c$; $ C_1$ is the common point of $ AA_c$ and $ BB_c$. Points $ A_1$, $ B_1$ are defined similarly. Prove that circle $ A_1B_1C_1$ passes through the circumcenter of triangle $ ABC$.
1996 AMC 12/AHSME, 10
How many line segments have both their endpoints located at the vertices of a given cube?
$\text{(A)}\ 12 \qquad \text{(B)}\ 15 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 28\qquad \text{(E)}\ 56$
2010 Junior Balkan Team Selection Tests - Romania, 4
Let $I$ be the incenter of scalene triangle ABC and denote by $a,$ $b$ the circles with diameters $IC$ and $IB$, respectively. If $c,$ $d$ mirror images of $a,$ $b$ in $IC$ and $IB$ prove that the circumcenter $O$ of triangle $ABC$ lies on the radical axis of $c$ and $d$.
2010 Tournament Of Towns, 6
Each cell of a $1000\times 1000$ table contains $0$ or $1$. Prove that one can either cut out $990$ rows so that at least one $1$ remains in each column, or cut out $990$ columns so that at least one $0$ remains in each row.
2010 Contests, 4
The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.
2012 Mexico National Olympiad, 1
Let $\mathcal{C}_1$ be a circumference with center $O$, $P$ a point on it and $\ell$ the line tangent to $\mathcal{C}_1$ at $P$. Consider a point $Q$ on $\ell$ different from $P$, and let $\mathcal{C}_2$ be the circumference passing through $O$, $P$ and $Q$. Segment $OQ$ cuts $\mathcal{C}_1$ at $S$ and line $PS$ cuts $\mathcal{C}_2$ at a point $R$ diffferent from $P$. If $r_1$ and $r_2$ are the radii of $\mathcal{C}_1$ and $\mathcal{C}_2$ respectively, Prove
\[\frac{PS}{SR} = \frac{r_1}{r_2}.\]
Kyiv City MO Seniors Round2 2010+ geometry, 2019.11.3.1
It is known that in the triangle $ABC$ the smallest side is $BC$. Let $X, Y, K$ and $L$ - points on the sides $AB, AC$ and on the rays $CB, BC$, respectively, are such that $BX = BK = BC =CY =CL$. The line $KX$ intersects the line $LY$ at the point $M$. Prove that the intersection point of the medians $\vartriangle KLM$ coincides with the center of the inscribed circle $\vartriangle ABC$.
2013 Online Math Open Problems, 27
Geodude wants to assign one of the integers $1,2,3,\ldots,11$ to each lattice point $(x,y,z)$ in a 3D Cartesian coordinate system. In how many ways can Geodude do this if for every lattice parallelogram $ABCD$, the positive difference between the sum of the numbers assigned to $A$ and $C$ and the sum of the numbers assigned to $B$ and $D$ must be a multiple of $11$? (A [i]lattice point[/i] is a point with all integer coordinates. A [i]lattice parallelogram[/i] is a parallelogram with all four vertices lying on lattice points. Here, we say four not necessarily distinct points $A,B,C,D$ form a [i]parallelogram[/i] $ABCD$ if and only if the midpoint of segment $AC$ coincides with the midpoint of segment $BD$.)
[hide="Clarifications"]
[list]
[*] The ``positive difference'' between two real numbers $x$ and $y$ is the quantity $|x-y|$. Note that this may be zero.
[*] The last sentence was added to remove confusion about ``degenerate parallelograms.''[/list][/hide]
[i]Victor Wang[/i]
2011 Middle European Mathematical Olympiad, 6
Let $ABC$ be an acute triangle. Denote by $B_0$ and $C_0$ the feet of the altitudes from vertices $B$ and $C$, respectively. Let $X$ be a point inside the triangle $ABC$ such that the line $BX$ is tangent to the circumcircle of the triangle $AXC_0$ and the line $CX$ is tangent to the circumcircle of the triangle $AXB_0$. Show that the line $AX$ is perpendicular to $BC$.
STEMS 2021 Math Cat B, Q3
Let $ABC$ be a triangle with $I$ as incenter.The incircle touches $BC$ at $D$.Let $D'$ be the antipode of $D$ on the incircle.Make a tangent at $D'$ to incircle.Let it meet $(ABC)$ at $X,Y$ respectively.Let the other tangent from $X$ meet the other tangent from $Y$ at $Z$.Prove that $(ZBD)$ meets $IB$ at the midpoint of $IB$
2003 Denmark MO - Mohr Contest, 4
Georg and his mother love pizza. They buy a pizza shaped as an equilateral triangle. Georg demands to be allowed to divide the pizza by a straight cut and then make the first choice. The mother accepts this reluctantly, but she wants to choose a point of the pizza through which the cut must pass. Determine the largest fraction of the pizza which the mother is certain to get by this procedure.
2022 Durer Math Competition Finals, 12
Csongi taught Benedek how to fold a duck in 8 steps from a $24$ cm $\times 24$ cm piece of paper. The paper is meant to be folded along the dashed line in the direction of the arrow. Once Benedek folded the duck, he undid all the steps, finding crease lines on the square sheet of paper. On one side of the paper, he drew in blue the folds which opened towards Benedek, and in red the folds which opened toward the table. How many cm is the difference between the total length of the blue lines and the red lines?
[img]https://cdn.artofproblemsolving.com/attachments/0/1/358a3b2c3b959a85406b94e34c182fd1c2e28d.png[/img]