This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2016 Estonia Team Selection Test, 12

The circles $k_1$ and $k_2$ intersect at points $M$ and $N$. The line $\ell$ intersects with the circle $k_1$ at points $A$ and $C$ and with circle $k_2$ at points $B$ and $D$, so that points $A, B, C$ and $D$ are on the line $\ell$ in that order. Let $X$ be a point on line $MN$ such that the point $M$ is between points $X$ and $N$. Lines $AX$ and $BM$ intersect at point $P$ and lines $DX$ and $CM$ intersect at point $Q$. Prove that $PQ \parallel \ell $.

2014 Czech and Slovak Olympiad III A, 5

Given is the acute triangle $ABC$. Let us denote $k$ a circle with diameter $AB$. Another circle, tangent to $AB$ at point $A$ and passing through point $C$ intersects the circle $k$ at point $P, P \ne A$. Another circle which touches AB at point $B$ and passes point $C$, intersects the circle $k$ at point $Q, Q \ne B$. Prove that the intersection of the line $AQ$ and $BP$ lies on one of the sides of angle $ACB$. (Peter Novotný)

2007 China Western Mathematical Olympiad, 4

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

2010 Junior Balkan MO, 3

Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.

2017 Sharygin Geometry Olympiad, 3

Let $AD, BE$ and $CF$ be the medians of triangle $ABC$. The points $X$ and $Y$ are the reflections of $F$ about $AD$ and $BE$, respectively. Prove that the circumcircles of triangles $BEX$ and $ADY$ are concentric.

1994 Tournament Of Towns, (401) 3

Let $O$ be a point inside a convex polygon $A_1A_2... A_n$ such that $$\angle OA_1A_n \le \angle OA_1A_2, \angle OA_2A_1 \le \angle OA_2A_3, ..., \angle OA_{n-1}A_{n-2} \le \angle OA_{n-1}A_n, \angle OA_nA_{n-1} \le \angle OA_nA_1$$ and all of these angles are acute. Prove that $O$ is the centre of the circle inscribed in the polygon. (V Proizvolov)

2008 Saint Petersburg Mathematical Olympiad, 5

All faces of the tetrahedron $ABCD $ are acute-angled triangles.$AK$ and $AL$ -are altitudes in faces $ABC$ and $ABD$. Points $C,D,K,L$ lies on circle. Prove, that $AB \perp CD$

2008 Romania Team Selection Test, 3

Let $ \mathcal{P}$ be a square and let $ n$ be a nonzero positive integer for which we denote by $ f(n)$ the maximum number of elements of a partition of $ \mathcal{P}$ into rectangles such that each line which is parallel to some side of $ \mathcal{P}$ intersects at most $ n$ interiors (of rectangles). Prove that \[ 3 \cdot 2^{n\minus{}1} \minus{} 2 \le f(n) \le 3^n \minus{} 2.\]

1976 IMO Longlists, 17

Show that there exists a convex polyhedron with all its vertices on the surface of a sphere and with all its faces congruent isosceles triangles whose ratio of sides are $\sqrt{3} :\sqrt{3} :2$.

2013 Baltic Way, 11

In an acute triangle $ABC$ with $AC > AB$, let $D$ be the projection of $A$ on $BC$, and let $E$ and $F$ be the projections of $D$ on $AB$ and $AC$, respectively. Let $G$ be the intersection point of the lines $AD$ and $EF$. Let $H$ be the second intersection point of the line $AD$ and the circumcircle of triangle $ABC$. Prove that \[AG \cdot AH=AD^2\]

2012 India PRMO, 2

Tags: geometry
A triangle with perimeter $7$ has integer sidelengths. What is the maximum possible area of such a triangle?

2016 Azerbaijan BMO TST, 4

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

2012 HMNT, 9

Tags: geometry
Triangle $ABC$ satisfies $\angle B > \angle C$. Let $M$ be the midpoint of $BC$, and let the perpendicular bisector of $BC$ meet the circumcircle of $\vartriangle ABC$ at a point $D$ such that points $A$, $D$, $C$, and $B$ appear on the circle in that order. Given that $\angle ADM = 68^o$ and $\angle DAC = 64^o$ , find $\angle B$.

2009 Stanford Mathematics Tournament, 8

Three points are randomly placed on a circle. What is the probability that they lie on the same semicircle

MMPC Part II 1958 - 95, 1974

[b]p1.[/b] Let $S$ be the sum of the $99$ terms: $$(\sqrt1 + \sqrt2)^{-1},(\sqrt2 + \sqrt3)^{-1}, (\sqrt3 + \sqrt4)^{-1},..., (\sqrt{99} + \sqrt{100})^{-1}.$$ Prove that $S$ is an integer. [b]p2.[/b] Determine all pairs of positive integers $x$ and $y$ for which $N=x^4+4y^4$ is a prime. (Your work should indicate why no other solutions are possible.) [b]p3.[/b] Let $w,x,y,z$ be arbitrary positive real numbers. Prove each inequality: (a) $xy \le \left(\frac{x+y}{2}\right)^2$ (b) $wxyz \le \left(\frac{w+x+y+z}{4}\right)^4$ (c) $xyz \le \left(\frac{x+y+z}{3}\right)^3$ [b]p4.[/b] Twelve points $P_1$,$P_2$, $...$,$P_{12}$ are equally spaaed on a circle, as shown. Prove: that the chords $\overline{P_1P_9}$, $\overline{P_4P_{12}}$ and $\overline{P_2P_{11}}$ have a point in common. [img]https://cdn.artofproblemsolving.com/attachments/d/4/2eb343fd1f9238ebcc6137f7c84a5f621eb277.png[/img] [b]p5.[/b] Two very busy men, $A$ and $B$, who wish to confer, agree to appear at a designated place on a certain day, but no earlier than noon and no later than $12:15$ p.m. If necessary, $A$ will wait $6$ minutes for $B$ to arrive, while $B$ will wait $9$ minutes for $A$ to arrive but neither can stay past $12:15$ p.m. Express as a percent their chance of meeting. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Iran MO (2nd Round), 1

Tags: geometry
Let $P $ be the intersection of $AC $ and $BD $ in isosceles trapezoid  $ABCD $ ($AB\parallel CD$ , $BC=AD $) . The circumcircle of triangle $ABP $ inersects $BC $ for the second time at $X $. Point $Y $ lies on $AX $ such that $DY\parallel BC $. Prove that $\hat {YDA} =2.\hat {YCA} $.

2021 AMC 10 Spring, 7

Tags: geometry
In a plane, four circles with radii $1,3,5,$ and $7$ are tangent to line $l$ at the same point $A,$ but they may be on either side of $l$. Region $S$ consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region $S$? $\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi$

2013 Estonia Team Selection Test, 4

Let $D$ be the point different from $B$ on the hypotenuse $AB$ of a right triangle $ABC$ such that $|CB| = |CD|$. Let $O$ be the circumcenter of triangle $ACD$. Rays $OD$ and $CB$ intersect at point $P$, and the line through point $O$ perpendicular to side AB and ray $CD$ intersect at point $Q$. Points $A, C, P, Q$ are concyclic. Does this imply that $ACPQ$ is a square?

2020 JBMO Shortlist, 2

Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$, and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \neq A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ and $(c_1)$ be the circumcircles of the triangles $\triangle AEZ$ and $\triangle BEZ$, respectively. Let $(c_2)$ be an arbitrary circle passing through the points $A$ and $E$. Suppose $(c_1)$ meets the line $CZ$ again at the point $F$, and meets $(c_2)$ again at the point $N$. If $P$ is the other point of intersection of $(c_2)$ with $AF$, prove that the points $N$, $B$, $P$ are collinear.

2004 IMO Shortlist, 3

Let $O$ be the circumcenter of an acute-angled triangle $ABC$ with ${\angle B<\angle C}$. The line $AO$ meets the side $BC$ at $D$. The circumcenters of the triangles $ABD$ and $ACD$ are $E$ and $F$, respectively. Extend the sides $BA$ and $CA$ beyond $A$, and choose on the respective extensions points $G$ and $H$ such that ${AG=AC}$ and ${AH=AB}$. Prove that the quadrilateral $EFGH$ is a rectangle if and only if ${\angle ACB-\angle ABC=60^{\circ }}$. [i]Proposed by Hojoo Lee, Korea[/i]

1983 Kurschak Competition, 3

Given are $n + 1$ points $P_1, P_2,..., P_n$ and $Q$ in the plane, no three collinear. For any two different points $P_i$ and $P_j$ , there is a point $P_k$ such that the point $Q$ lies inside the triangle $P_iP_jP_k$. Prove that $n$ is an odd number.

2006 National Olympiad First Round, 9

$ABC$ is a triangle with $|AB|=6$, $|BC|=7$, and $|AC|=8$. Let the angle bisector of $\angle A$ intersect $BC$ at $D$. If $E$ is a point on $[AC]$ such that $|CE|=2$, what is $|DE|$? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ \frac {17}5 \qquad\textbf{(C)}\ \frac 72 \qquad\textbf{(D)}\ 2\sqrt 3 \qquad\textbf{(E)}\ 3\sqrt 2 $

1978 Putnam, B1

Tags: geometry , area
Find the area of a convex octagon that is inscribed in a circle and has four consecutive sides of length $3$ and the remaining four sides of length $2$. Give the answer in the form $r+s\sqrt{t}$ with $r,s, t$ positive integers.

2004 Bulgaria Team Selection Test, 2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

1986 AMC 12/AHSME, 8

Tags: geometry
The population of the United States in 1980 was $226,504,825$. The area of the country is $3,615,122$ square miles. The are $(5280)^{2}$ square feet in one square mile. Which number below best approximates the average number of square feet per person? $ \textbf{(A)}\ 5,000\qquad\textbf{(B)}\ 10,000\qquad\textbf{(C)}\ 50,000\qquad\textbf{(D)}\ 100,000\qquad\textbf{(E)}\ 500,000 $