Found problems: 25757
2010 Bosnia and Herzegovina Junior BMO TST, 3
Points $M$ and $N$ are given on sides $AD$ and $BC$ of rhombus $ABCD$, respectively. Line $MC$ intersects line $BD$ in point $T$, line $MN$ intersects line $BD$ in point $U$, line $CU$ intersects line $AB$ in point $Q$ and line $QT$ intersects line $CD$ in $P$. Prove that triangles $QCP$ and $MCN$ have equal area
2018 NZMOC Camp Selection Problems, 3
Show that amongst any $ 8$ points in the interior of a $7 \times 12$ rectangle, there exists a pair whose distance is less than $5$.
Note: The interior of a rectangle excludes points lying on the sides of the rectangle.
1999 South africa National Olympiad, 3
The bisector of $\angle{BAD}$ in the parallellogram $ABCD$ intersects the lines $BC$ and $CD$ at the points $K$ and $L$ respectively. Prove that the centre of the circle passing through the points $C,\ K$ and $L$ lies on the circle passing through the points $B,\ C$ and $D$.
2019 Iranian Geometry Olympiad, 5
For a convex polygon (i.e. all angles less than $180^\circ$) call a diagonal [i]bisector[/i] if its bisects both area and perimeter of the polygon. What is the maximum number of bisector diagonals for a convex pentagon?
[i]Proposed by Morteza Saghafian[/i]
2011 AMC 8, 25
A circle with radius $1$ is inscribed in a square and circumscribed about another square as shown. Which fraction is closest to the ratio of the circle's shaded area to the area between the two squares?
[asy]
filldraw((-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle,mediumgray,black);
filldraw(Circle((0,0),1), mediumgray,black);
filldraw((-1,0)--(0,1)--(1,0)--(0,-1)--cycle,white,black);[/asy]
$ \textbf{(A)}\ \frac{1}2\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ \frac{3}2\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \frac{5}2 $
Denmark (Mohr) - geometry, 2018.5
In triangle $ABC$ the angular bisector from $A$ intersects the side $BC$ at the point $D$, and the angular bisector from $B$ intersects the side $AC$ at the point $E$. Furthermore $|AE| + |BD| = |AB|$. Prove that $\angle C = 60^o$
[img]https://1.bp.blogspot.com/-8ARqn8mLn24/XzP3P5319TI/AAAAAAAAMUQ/t71-imNuS18CSxTTLzYXpd806BlG5hXxACLcBGAsYHQ/s0/2018%2BMohr%2Bp5.png[/img]
1989 Dutch Mathematical Olympiad, 4
Given is a regular $n$-sided pyramid with top $T$ and base $A_1A_2A_3... A_n$. The line perpendicular to the ground plane through a point $B$ of the ground plane within $A_1A_2A_3... A_n$ intersects the plane $TA_1A_2$ at $C_1$, the plane $TA_2A_3$ at $C_2$, and so on, and finally the plane $TA_nA_1$ at $C_n$. Prove that $BC_1 + BC_2 + ... + BC_n$ is independent of choice of $B$'s.
DMM Individual Rounds, 2008 Tie
[b]p1.[/b] (See the diagram below.) $ABCD$ is a square. Points $G$, $H$, $I$, and $J$ are chosen in the interior of $ABCD$ so that:
(i) $H$ is on $\overline{AG}$, $I$ is on $\overline{BH}$, $J$ is on $\overline{CI}$, and $G$ is on $\overline{DJ}$
(ii) $\vartriangle ABH \sim \vartriangle BCI \sim \vartriangle CDJ \sim \vartriangle DAG$ and
(iii) the radii of the inscribed circles of $\vartriangle ABH$, $\vartriangle BCI$, $\vartriangle CDJ$, $\vartriangle DAK$, and $GHIJ$ are all the same.
What is the ratio of $\overline{AB}$ to $\overline{GH}$?
[img]https://cdn.artofproblemsolving.com/attachments/f/b/47e8b9c1288874bc48462605ecd06ddf0f251d.png[/img]
[b]p2.[/b] The three solutions $r_1$, $r_2$, and $r_3$ of the equation $$x^3 + x^2 - 2x - 1 = 0$$ can be written in the form $2 \cos (k_1 \pi)$, $2 \cos (k_2 \pi)$, and $2 \cos (k_3 \pi)$ where $0 \le k_1 < k_2 < k_3 \le 1$. What is the ordered triple $(k_1, k_2, k_3)$?
[b]p3.[/b] $P$ is a convex polyhedron, all of whose faces are either triangles or decagons ($10$-sided polygon), though not necessarily regular. Furthermore, at each vertex of $P$ exactly three faces meet. If $P$ has $20$ triangular faces, how many decagonal faces does P have?
[b]p4.[/b] $P_1$ is a parabola whose line of symmetry is parallel to the $x$-axis, has $(0, 1)$ as its vertex, and passes through $(2, 2)$. $P_2$ is a parabola whose line of symmetry is parallel to the $y$-axis, has $(1, 0)$ as its vertex, and passes through $(2, 2)$. Find all four points of intersection between $P_1$ and $P_2$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
KoMaL A Problems 2017/2018, A. 702
Fix a triangle $ABC$. We say that triangle $XYZ$ is elegant if $X$ lies on segment $BC$, $Y$ lies on segment $CA$, $Z$ lies on segment $AB$, and $XYZ$ is similar to $ABC$ (i.e., $\angle A=\angle X, \angle B=\angle Y, \angle C=\angle Z $). Of all the elegant triangles, which one has the smallest perimeter?
2006 Taiwan TST Round 1, 2
Let $P$ be a point on the plane. Three nonoverlapping equilateral triangles $PA_1A_2$, $PA_3A_4$, $PA_5A_6$ are constructed in a clockwise manner. The midpoints of $A_2A_3$, $A_4A_5$, $A_6A_1$ are $L$, $M$, $N$, respectively. Prove that triangle $LMN$ is equilateral.
1982 IMO Shortlist, 2
Let $K$ be a convex polygon in the plane and suppose that $K$ is positioned in the coordinate system in such a way that
\[\text{area } (K \cap Q_i) =\frac 14 \text{area } K \ (i = 1, 2, 3, 4, ),\]
where the $Q_i$ denote the quadrants of the plane. Prove that if $K$ contains no nonzero lattice point, then the area of $K$ is less than $4.$
JBMO Geometry Collection, 2001
Let $ABC$ be a triangle with $\angle C = 90^\circ$ and $CA \neq CB$. Let $CH$ be an altitude and $CL$ be an interior angle bisector. Show that for $X \neq C$ on the line $CL$, we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line $CH$ we have $\angle YAC \neq \angle YBC$.
[i]Bulgaria[/i]
Champions Tournament Seniors - geometry, 2019.2
The quadrilateral $ABCD$ is inscribed in the circle and the lengths of the sides $BC$ and $DC$ are equal, and the length of the side $AB$ is equal to the length of the diagonal $AC$. Let the point $P$ be the midpoint of the arc $CD$, which does not contain point $A$, and $Q$ is the point of intersection of diagonals $AC$ and $BD$. Prove that the lines $PQ$ and $AB$ are perpendicular.
1991 Balkan MO, 1
Let $ABC$ be an acute triangle inscribed in a circle centered at $O$. Let $M$ be a point on the small arc $AB$ of the triangle's circumcircle. The perpendicular dropped from $M$ on the ray $OA$ intersects the sides $AB$ and $AC$ at the points $K$ and $L$, respectively. Similarly, the perpendicular dropped from $M$ on the ray $OB$ intersects the sides $AB$ and $BC$ at $N$ and $P$, respectively. Assume that $KL=MN$. Find the size of the angle $\angle{MLP}$ in terms of the angles of the triangle $ABC$.
ABMC Accuracy Rounds, 2023
[b]p1.[/b] Find $$2^{\left(0^{\left(2^3\right)}\right)}$$
[b]p2.[/b] Amy likes to spin pencils. She has an $n\%$ probability of dropping the $n$th pencil. If she makes $100$ attempts, the expected number of pencils Amy will drop is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p + q$.
[b]p3.[/b] Determine the units digit of $3 + 3^2 + 3^3 + 3^4 +....+ 3^{2022} + 3^{2023}$.
[b]p4.[/b] Cyclic quadrilateral $ABCD$ is inscribed in circle $\omega$ with center $O$ and radius $20$. Let the intersection of $AC$ and $BD$ be $E$, and let the inradius of $\vartriangle AEB$ and $\vartriangle CED$ both be equal to $7$. Find $AE^2 - BE^2$.
[b]p5.[/b] An isosceles right triangle is inscribed in a circle which is inscribed in an isosceles right triangle that is inscribed in another circle. This larger circle is inscribed in another isosceles right triangle. If the ratio of the area of the largest triangle to the area of the smallest triangle can be expressed as $a+b\sqrt{c}$, such that $a, b$ and $c$ are positive integers and no square divides $c$ except $1$, find $a + b + c$.
[b]p6.[/b] Jonny has three days to solve as many ISL problems as he can. If the amount of problems he solves is equal to the maximum possible value of $gcd \left(f(x), f(x+1) \right)$ for $f(x) = x^3 +2$ over all positive integer values of $x$, then find the amount of problems Jonny solves.
[b]p7.[/b] Three points $X$, $Y$, and $Z$ are randomly placed on the sides of a square such that $X$ and $Y$ are always on the same side of the square. The probability that non-degenerate triangle $\vartriangle XYZ$ contains the center of the square can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p8.[/b] Compute the largest integer less than $(\sqrt7 +\sqrt3)^6$.
[b]p9.[/b] Find the minimum value of the expression $\frac{(x+y)^2}{x-y}$ given $x > y > 0$ are real numbers and $xy = 2209$.
[b]p10.[/b] Find the number of nonnegative integers $n \le 6561$ such that the sum of the digits of $n$ in base $9$ is exactly $4$ greater than the sum of the digits of $n$ in base $3$.
[b]p11.[/b] Estimation (Tiebreaker) Estimate the product of the number of people who took the December contest, the sum of all scores in the November contest, and the number of incorrect responses for Problem $1$ and Problem $2$ on the October Contest.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 BMT Spring, 2
S-Corporation designs its logo by linking together $4$ semicircles along the diameter of a unit circle. Find the perimeter of the shaded portion of the logo.
[img]https://cdn.artofproblemsolving.com/attachments/8/6/f0eabd46f5f3a5806d49012b2f871a453b9e7f.png[/img]
2018 India PRMO, 10
In a triangle $ABC$, the median from $B$ to $CA$ is perpendicular to the median from $C$ to $AB$.
If the median from $A$ to $BC$ is $30$, determine $\frac{BC^2 + CA^2 + AB^2}{100}$.
2013 Online Math Open Problems, 9
Let $AXYZB$ be a regular pentagon with area $5$ inscribed in a circle with center $O$. Let $Y'$ denote the reflection of $Y$ over $\overline{AB}$ and suppose $C$ is the center of a circle passing through $A$, $Y'$ and $B$. Compute the area of triangle $ABC$.
[i]Proposed by Evan Chen[/i]
2005 IMO, 5
Let $ABCD$ be a fixed convex quadrilateral with $BC=DA$ and $BC$ not parallel with $DA$. Let two variable points $E$ and $F$ lie of the sides $BC$ and $DA$, respectively and satisfy $BE=DF$. The lines $AC$ and $BD$ meet at $P$, the lines $BD$ and $EF$ meet at $Q$, the lines $EF$ and $AC$ meet at $R$.
Prove that the circumcircles of the triangles $PQR$, as $E$ and $F$ vary, have a common point other than $P$.
1985 AIME Problems, 6
As shown in the figure, triangle $ABC$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of these triangles are as indicated. Find the area of triangle $ABC$.
[asy]
size(200);
pair A=origin, B=(14,0), C=(9,12), D=foot(A, B,C), E=foot(B, A, C), F=foot(C, A, B), H=orthocenter(A, B, C);
draw(F--C--A--B--C^^A--D^^B--E);
label("$A$", A, SW);
label("$B$", B, SE);
label("$C$", C, N);
label("84", centroid(H, C, E), fontsize(9.5));
label("35", centroid(H, B, D), fontsize(9.5));
label("30", centroid(H, F, B), fontsize(9.5));
label("40", centroid(H, A, F), fontsize(9.5));[/asy]
Kyiv City MO 1984-93 - geometry, 1990.8.2
A line passes through the center $O$ of an equilateral triangle $ABC$ and intersects the side $BC$. At what angle wrt $BC$ should this line be drawn this line so that its segment inside the triangle has the smallest possible length?
2011 Germany Team Selection Test, 2
Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$
[i]Proposed by Nazar Serdyuk, Ukraine[/i]
2010 Sharygin Geometry Olympiad, 6
Points $M$ and $N$ lie on the side $BC$ of the regular triangle $ABC$ ($M$ is between $B$ and $N$), and $\angle MAN=30^\circ.$ The circumcircles of triangles $AMC$ and $ANB$ meet at a point $K.$ Prove that the line $AK$ passes through the circumcenter of triangle $AMN.$
2008 Sharygin Geometry Olympiad, 19
(V.Protasov, 10-11) Given parallelogram $ ABCD$ such that $ AB \equal{} a$, $ AD \equal{} b$. The first circle has its center at vertex $ A$ and passes through $ D$, and the second circle has its center at $ C$ and passes through $ D$. A circle with center $ B$ meets the first circle at points $ M_1$, $ N_1$, and the second circle at points $ M_2$, $ N_2$. Determine the ratio $ M_1N_1/M_2N_2$.
LMT Speed Rounds, 18
In square $ABCD$ with side length $2$, let $M$ be the midpoint of $AB$. Let $N$ be a point on $AD$ such that $AN = 2ND$. Let point $P$ be the intersection of segment $MN$ and diagonal $AC$. Find the area of triangle $BPM$.
[i]Proposed by Jacob Xu[/i]