This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2019 Korea Winter Program Practice Test, 2

$\omega_1,\omega_2$ are orthogonal circles, and their intersections are $P,P'$. Another circle $\omega_3$ meets $\omega_1$ at $Q,Q'$, and $\omega_2$ at $R,R'$. (The points $Q,R,Q',R'$ are in clockwise order.) Suppose $P'R$ and $PR'$ meet at $S$, and let $T$ be the circumcenter of $\triangle PQR$. Prove that $T,Q,S$ are collinear if and only if $O_1,S,O_3$ are collinear. ($O_i$ is the center of $\omega_i$ for $i=1,2,3$.)

Kvant 2019, M2567

Tags: geometry
On sides $BC$, $CA$, $AB$ of a triangle $ABC$ points $K$, $L$, $M$ are chosen, respectively, and a point $P$ is inside $ABC$ is chosen so that $PL\parallel BC$, $PM\parallel CA$, $PK\parallel AB$. Determine if it is possible that each of three trapezoids $AMPL$, $BKPM$, $CLPK$ has an inscribed circle.

1967 AMC 12/AHSME, 19

The area of a rectangle remains unchanged when it is made $2 \frac{1}{2}$ inches longer and $\frac{2}{3}$ inch narrower, or when it is made $2 \frac{1}{2}$ inches shorter and $\frac{4}{3}$ inch wider. Its area, in square inches, is: $\textbf{(A)}\ 30\qquad \textbf{(B)}\ \frac{80}{3}\qquad \textbf{(C)}\ 24\qquad \textbf{(D)}\ \frac{45}{2}\qquad \textbf{(E)}\ 20$

Estonia Open Senior - geometry, 2002.1.4

In a triangle $ABC$ we have $\angle B = 2 \cdot \angle C$ and the angle bisector drawn from $A$ intersects $BC$ in a point $D$ such that $|AB| = |CD|$. Find $\angle A$.

2012 AMC 12/AHSME, 21

Square $AXYZ$ is inscribed in equiangular hexagon $ABCDEF$ with $X$ on $\overline{BC}$, $Y$ on $\overline{DE}$, and $Z$ on $\overline{EF}$. Suppose that $AB=40$, and $EF=41(\sqrt{3}-1)$. What is the side-length of the square? [asy] size(200); defaultpen(linewidth(1)); pair A=origin,B=(2.5,0),C=B+2.5*dir(60), D=C+1.75*dir(120),E=D-(3.19,0),F=E-1.8*dir(60); pair X=waypoint(B--C,0.345),Z=rotate(90,A)*X,Y=rotate(90,Z)*A; draw(A--B--C--D--E--F--cycle); draw(A--X--Y--Z--cycle,linewidth(0.9)+linetype("2 2")); dot("$A$",A,W,linewidth(4)); dot("$B$",B,dir(0),linewidth(4)); dot("$C$",C,dir(0),linewidth(4)); dot("$D$",D,dir(20),linewidth(4)); dot("$E$",E,dir(100),linewidth(4)); dot("$F$",F,W,linewidth(4)); dot("$X$",X,dir(0),linewidth(4)); dot("$Y$",Y,N,linewidth(4)); dot("$Z$",Z,W,linewidth(4)); [/asy] $ \textbf{(A)}\ 29\sqrt{3} \qquad\textbf{(B)}\ \frac{21}{2}\sqrt{2}+\frac{41}{2}\sqrt{3}\qquad\textbf{(C)}\ 20\sqrt{3}+16$ $\textbf{(D)}\ 20\sqrt{2}+13\sqrt{3} \qquad\textbf{(E)}\ 21\sqrt{6}$

Estonia Open Junior - geometry, 2019.1.5

Point $M$ lies on the diagonal $BD$ of parallelogram $ABCD$ such that $MD = 3BM$. Lines $AM$ and $BC$ intersect in point $N$. What is the ratio of the area of triangle $MND$ to the area of parallelogram $ABCD$?

Russian TST 2018, P1

Let $ABC$ be an isosceles triangle with $AB = AC$. Let P be a point in the interior of $ABC$ such that $PB > PC$ and $\angle PBA = \angle PCB$. Let $M$ be the midpoint of the side $BC$. Let $O$ be the circumcenter of the triangle $APM$. Prove that $\angle OAC=2 \angle BPM$ .

1976 IMO Longlists, 42

Tags: geometry , ratio
For a point $O$ inside a triangle $ABC$, denote by $A_1,B_1, C_1,$ the respective intersection points of $AO, BO, CO$ with the corresponding sides. Let \[n_1 =\frac{AO}{A_1O}, n_2 = \frac{BO}{B_1O}, n_3 = \frac{CO}{C_1O}.\] What possible values of $n_1, n_2, n_3$ can all be positive integers?

2006 Sharygin Geometry Olympiad, 25

In the tetrahedron $ABCD$ , the dihedral angles at the $BC, CD$, and $DA$ edges are equal to $\alpha$, and for the remaining edges equal to $\beta$. Find the ratio $AB / CD$.

LMT Speed Rounds, 2021 F

[b]p1.[/b] Compute $21 \cdot 21 - 20 \cdot 20$. [b]p2.[/b] A square has side length $2$. If the square is scaled by a factor of $n$, the perimeter of the new square is equal to the area of the original square. Find $10n$. [b]p3.[/b] Kevin has $2$ red marbles and $2$ blue marbles in a box. He randomly grabs two marbles. The probability that they are the same color can be expressed as $\frac{a}{b}$ for relatively prime integers $a$ and $b$. Find $a +b$. [b]p4.[/b] In a classroom, if the teacher splits the students into groups of $3$ or $4$, there is one student left out. If the students formgroups of $5$, every student is in a group. What is the fewest possible number of students in this classroom? [b]p5.[/b] Find the sum of all positive integer values of $x$ such that $\lfloor \sqrt{x!} \rfloor = x$. [b]p6.[/b] Find the number of positive integer factors of $2021^{(2^0+2^1)} \cdot 1202^{(1^2+0^2)}$. [b]p7.[/b] Let $n$ be the number of days over a $13$ year span. Find the difference between the greatest and least possible values of $n$. Note: All years divisible by $4$ are leap years unless they are divisible by 100 but not $400$. For example, $2000$ and $2004$ are leap years, but $1900$ is not. [b]p8.[/b] In isosceles $\vartriangle ABC$, $AB = AC$, and $\angle ABC = 72^o$. The bisector of $\angle ABC$ intersects $AC$ at $D$. Given that $BC = 30$, find $AD$. [b]p9.[/b] For an arbitrary positive value of $x$, let $h$ be the area of a regular hexagon with side length $x$ and let $s$ be the area of a square with side length $x$. Find the value of $\left \lfloor \frac{10h}{s} \right \rfloor$. [b]p10.[/b] There is a half-full tub of water with a base of $4$ inches by $5$ inches and a height of $8$ inches. When an infinitely long stick with base $1$ inch by $1$ inch is inserted vertically into the bottom of the tub, the number of inches the water level rises by can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p11.[/b] Find the sum of all $4$-digit numbers with digits that are a permutation of the digits in $2021$. Note that positive integers cannot have first digit $0$. [b]p12.[/b] A $10$-digit base $8$ integer is chosen at random. The probability that it has $30$ digits when written in base $2$ can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p13.[/b] Call a natural number sus if it can be expressed as $k^2 +k +1$ for some positive integer $k$. Find the sum of all sus integers less than $2021$. [b]p14.[/b] In isosceles triangle $ABC$, $D$ is the intersection of $AB$ and the perpendicular to $BC$ through $C$. Given that $CD = 5$ and $AB = BC = 1$, find $\sec^2 \angle ABC$. [b]p15.[/b] Every so often, the minute and hour hands of a clock point in the same direction. The second time this happens after 1:00 is a b minutes later, where a and b are relatively prime positive integers. Find a +b. [b]p16.[/b] The $999$-digit number $N = 123123...123$ is composed of $333$ iterations of the number $123$. Find the least nonnegative integerm such that $N +m$ is a multiple of $101$. [b]p17.[/b] The sum of the reciprocals of the divisors of $2520$ can be written as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p18.[/b] Duncan, Paul, and $6$ Atreides guards are boarding three helicopters. Duncan, Paul, and the guards enter the helicopters at random, with the condition that Duncan and Paul do not enter the same helicopter. Note that not all helicoptersmust be occupied. The probability that Paul has more guards with him in his helicopter than Duncan does can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p19.[/b] Let the minimum possible distance from the origin to the parabola $y = x^2 -2021$ be $d$. The value of d2 can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$. [b]p20.[/b] In quadrilateral $ABCD$ with interior point $E$ and area $49 \sqrt3$, $\frac{BE}{CE}= 2 \sqrt3$, $\angle ABC = \angle BCD = 90^o$, and $\vartriangle ABC \sim \vartriangle BCD \sim \vartriangle BEC$. The length of $AD$ can be expressed aspn where $n$ is a positive integer. Find $n$. [b]p21.[/b] Find the value of $$\sum^{\infty}_{i=1}\left( \frac{i^2}{2^{i-1}}+\frac{i^2}{2^{i}}+\frac{i^2}{2^{i+1}}\right)=\left( \frac{1^2}{2^{0}}+\frac{1^2}{2^{1}}+\frac{1^2}{2^{2}}\right)+\left( \frac{2^2}{2^{1}}+\frac{2^2}{2^{2}}+\frac{2^2}{2^{3}}\right)+\left( \frac{3^2}{2^{2}}+\frac{2^2}{2^{3}}+\frac{2^2}{2^{4}}\right)+...$$ [b]p22.[/b] Five not necessarily distinct digits are randomly chosen in some order. Let the probability that they form a nondecreasing sequence be $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find the remainder when $a +b$ is divided by$ 1000$. [b]p23.[/b] Real numbers $a$, $b$, $c$, and d satisfy $$ac -bd = 33$$ $$ad +bc = 56.$$ Given that $a^2 +b^2 = 5$, find the sum of all possible values of $c^2 +d^2$. [b]p24.[/b] Jeff has a fair tetrahedral die with sides labeled $0$, $1$, $2$, and $3$. He continuously rolls the die and record the numbers rolled in that order. For example, if he rolls a $1$, then rolls a $2$, and then rolls a $3$, he writes down $123$. He keeps rolling the die until he writes the substring $2021$. What is the expected number of times he rolls the die? [b]p25.[/b] In triangle $ABC$, $BC = 2\sqrt3$, and $AB = AC = 4\sqrt3$. Circle $\omega$ with center $O$ is tangent to segment $AB$ at $T$ , and $\omega$ is also tangent to ray $CB$ past $B$ at another point. Points $O, T$ , and $C$ are collinear. Let $r$ be the radius of $\omega$. Given that $r^2 = \frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers, find $a +b$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 Hanoi Open Mathematics Competitions, 12

Let $ABC$ be an acute triangle with $AB < AC$, and let $BE$ and $CF$ be the altitudes. Let the median $AM$ intersect $BE$ at point $P$, and let line $CP$ intersect $AB$ at point $D$ (see Figure 2). Prove that $DE \parallel BC$, and $AC$ is tangent to the circumcircle of $\vartriangle DEF$. [img]https://cdn.artofproblemsolving.com/attachments/f/7/bbad9f6019a77c6aa46c3a821857f06233cb93.png[/img]

2016 Indonesia TST, 4

In a non-isosceles triangle $ABC$, let $I$ be its incenter. The incircle of $ABC$ touches $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. A line passing through $D$ and perpendicular to $AD$ intersects $IB$ and $IC$ at $A_b$ and $A_c$, respectively. Define the points $B_c$, $B_a$, $C_a$, and $C_b$ similarly. Let $G$ be the intersection of the cevians $AD$, $BE$, and $CF$. The points $O_1$ and $O_2$ are the circumcenter of the triangles $A_bB_cC_a$ and $A_cB_aC_b$, respectively. Prove that $IG$ is the perpendicular bisector of $O_1O_2$.

Kyiv City MO 1984-93 - geometry, 1989.10.5

The base of the quadrangular pyramid $SABCD$ is a quadrilateral $ABCD$, the diagonals of which are perpendicular. The apex of the pyramid is projected at intersection point $O$ of the diagonals of the base. Prove that the feet of the perpendiculars drawn from point $O$ to the side faces of the pyramid lie on one circle.

2010 Today's Calculation Of Integral, 663

Given are the curve $y=x^2+x-2$ and a curve which is obtained by tranfering the curve symmetric with respect to the point $(p,\ 2p)$. Let $p$ change in such a way that these two curves intersects, find the maximum area of the part bounded by these curves. [i]1978 Nagasaki University entrance exam/Economics[/i]

2014 Contests, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

1972 Dutch Mathematical Olympiad, 5

Tags: geometry , ratio
Given is an acute-angled triangle $ABC$ with angles $\alpha$, $\beta$ and $\gamma$. On side $AB$ lies a point $P$ such that the line connecting the feet of the perpendiculars from $P$ on $AC$ and $BC$ is parallel to $AB$. Express the ratio $\frac{AP}{BP}$ in terms of $\alpha$ and $\beta$.

1970 IMO Longlists, 33

The vertices of a given square are clockwise lettered $A,B,C,D$. On the side $AB$ is situated a point $E$ such that $AE = AB/3$. Starting from an arbitrarily chosen point $P_0$ on segment $AE$ and going clockwise around the perimeter of the square, a series of points $P_0, P_1, P_2, \ldots$ is marked on the perimeter such that $P_iP_{i+1} = AB/3$ for each $i$. It will be clear that when $P_0$ is chosen in $A$ or in $E$, then some $P_i$ will coincide with $P_0$. Does this possibly also happen if $P_0$ is chosen otherwise?

VMEO I 2004, 3

In the plane, given an angle $Axy$. a) Given a triangle $MNP$ of area $T$, describe how to construct a triangle of given area $T$ and altitude $h$. Using this, describe how to construct parallelogram A$BCD$ with two sides lying on $Ax$ and $Ay$, the area $T$ and the distance between the two opposite sides equal to d given. b) From an arbitrary point $I$ on the line $CD$, construct a line that intersects the lines $A$B, $BC$, $AD$ at $E$, $G$ and $F$ respectively so that the area of triangle $AEF$ is equal to the area of parallelogram $ABCD$. c) Apply the above two sentences: Given any point $O$ in the plane. From $O$, construct a line that intersects two rays $Ax$ and $Ay$ at $E$ and $F$ respectively so that the area of triangle $AEF$ is equal to the area of any given triangle.

2008 AMC 8, 25

Tags: geometry , percent
Margie's winning art design is shown. The smallest circle has radius 2 inches, with each successive circle's radius increasing by 2 inches. Approximately what percent of the design is black? [asy] real d=320; pair O=origin; pair P=O+8*dir(d); pair A0 = origin; pair A1 = O+1*dir(d); pair A2 = O+2*dir(d); pair A3 = O+3*dir(d); pair A4 = O+4*dir(d); pair A5 = O+5*dir(d); filldraw(Circle(A0, 6), white, black); filldraw(circle(A1, 5), black, black); filldraw(circle(A2, 4), white, black); filldraw(circle(A3, 3), black, black); filldraw(circle(A4, 2), white, black); filldraw(circle(A5, 1), black, black); [/asy] $ \textbf{(A)}\ 42\qquad \textbf{(B)}\ 44\qquad \textbf{(C)}\ 45\qquad \textbf{(D)}\ 46\qquad \textbf{(E)}\ 48\qquad$

1980 AMC 12/AHSME, 26

Four balls of radius 1 are mutually tangent, three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges have length $s$, is circumscribed around the balls. Then $s$ equals $\text{(A)} \ 4\sqrt 2 \qquad \text{(B)} \ 4\sqrt 3 \qquad \text{(C)} \ 2\sqrt 6 \qquad \text{(D)} \ 1+2\sqrt 6 \qquad \text{(E)} \ 2+2\sqrt 6$

Ukrainian From Tasks to Tasks - geometry, 2013.4

The trapezoid is composed of three conguent right isosceles triangles as shown in the figure. It is necessary to cut it into $4$ equal parts. How to do it? [img]https://cdn.artofproblemsolving.com/attachments/f/e/87b07ae823190f26b70bfa22824679a829e649.png[/img]

2015 Oral Moscow Geometry Olympiad, 4

In trapezoid $ABCD$, the bisectors of angles $A$ and $D$ intersect at point $E$ lying on the side of $BC$. These bisectors divide the trapezoid into three triangles into which the circles are inscribed. One of these circles touches the base $AB$ at the point $K$, and two others touch the bisector $DE$ at points $M$ and $N$. Prove that $BK = MN$.

1996 Tournament Of Towns, (485) 3

The two tangents to the incircle of a right-angled triangle $ABC$ that are perpendicular to the hypotenuse $AB$ intersect it at the points $P$ and $Q$. Find $\angle PCQ$. (M Evdokimov,)

2019 IberoAmerican, 4

Let $ABCD$ be a trapezoid with $AB\parallel CD$ and inscribed in a circumference $\Gamma$. Let $P$ and $Q$ be two points on segment $AB$ ($A$, $P$, $Q$, $B$ appear in that order and are distinct) such that $AP=QB$. Let $E$ and $F$ be the second intersection points of lines $CP$ and $CQ$ with $\Gamma$, respectively. Lines $AB$ and $EF$ intersect at $G$. Prove that line $DG$ is tangent to $\Gamma$.

the 10th XMO, 2

Given acute triangle $\vartriangle ABC$ with orthocenter $H$ and circumcenter $O$ ($O \ne H$) . Let $\Gamma$ be the circumcircle of $\vartriangle BOC$ . Segment $OH$ untersects $\Gamma$ at point $P$. Extension of $AO$ intersects $\Gamma$ at point $K$. If $AP \perp OH$, prove that $PK$ bisects $BC$. [img]https://cdn.artofproblemsolving.com/attachments/a/b/267053569c41692f47d8f4faf2a31ebb4f4efd.png[/img]