This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2015 IMO Shortlist, G1

Tags: geometry , triangle
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.

2012 Junior Balkan Team Selection Tests - Moldova, 3

Let $ ABC $ be an isosceles triangle with $ AC=BC $ . Take points $ D $ on side $AC$ and $E$ on side $BC$ and $ F $ the intersection of bisectors of angles $ DEB $ and $ADE$ such that $ F$ lies on side $AB$. Prove that $F$ is the midpoint of $AB$.

2012 Ukraine Team Selection Test, 2

$E$ is the intersection point of the diagonals of the cyclic quadrilateral, $ABCD, F$ is the intersection point of the lines $AB$ and $CD, M$ is the midpoint of the side $AB$, and $N$ is the midpoint of the side $CD$. The circles circumscribed around the triangles $ABE$ and $ACN$ intersect for the second time at point $K$. Prove that the points $F, K, M$ and $N$ lie on one circle.

2016 Germany Team Selection Test, 1

The two circles $\Gamma_1$ and $\Gamma_2$ with the midpoints $O_1$ resp. $O_2$ intersect in the two distinct points $A$ and $B$. A line through $A$ meets $\Gamma_1$ in $C \neq A$ and $\Gamma_2$ in $D \neq A$. The lines $CO_1$ and $DO_2$ intersect in $X$. Prove that the four points $O_1,O_2,B$ and $X$ are concyclic.

2014 Singapore Senior Math Olympiad, 35

Two circles intersect at the points $C$ and $D$. The straight lines $CD$ and $BYXA$ intersect at the point $Z$. Moreever, the straight line $WB$ is tangent to both of the circles. Suppose $ZX=ZY$ and $AB\cdot AX=100$. Find the value of $BW$.

1962 All Russian Mathematical Olympiad, 022

The $M$ point is the midpoint of the base $[AC]$ of an isosceles triangle $ABC$. $[MH]$ is orthogonal to $[BC]$ side. Point $P$ is the midpoint of the segment $[MH]$. Prove that $[AH]$ is orthogonal to $[BP]$.

JBMO Geometry Collection, 1998

Tags: geometry
Let $ABCDE$ be a convex pentagon such that $AB=AE=CD=1$, $\angle ABC=\angle DEA=90^\circ$ and $BC+DE=1$. Compute the area of the pentagon. [i]Greece[/i]

2002 Iran Team Selection Test, 1

Tags: geometry
$ABCD$ is a convex quadrilateral. We draw its diagnals to divide the quadrilateral to four triabgles. $P$ is the intersection of diagnals. $I_{1},I_{2},I_{3},I_{4}$ are excenters of $PAD,PAB,PBC,PCD$(excenters corresponding vertex $P$). Prove that $I_{1},I_{2},I_{3},I_{4}$ lie on a circle iff $ABCD$ is a tangential quadrilateral.

1965 Leningrad Math Olympiad, grade 8

[b]8.1[/b] A $24 \times 60$ rectangle is divided by lines parallel to it sides, into unit squares. Draw another straight line so that after that the rectangle was divided into the largest possible number of parts. [b]8.2[/b] Engineers always tell the truth, but businessmen always lie. F and G are engineers. A declares that, B asserts that, C asserts that, D says that, E insists that, F denies that G is an businessman. C also announces that D is a businessman. If A is a businessman, then how much total businessmen in this company? [b]8.3 [/b]There is a straight road through the field. A tourist stands on the road at a point ?. It can walk along the road at a speed of 6 km/h and across the field at a speed of 3 km/h. Find the locus of the points where the tourist can get there within an hour's walk. [b]8.4 / 7.5 [/b] Let $ [A]$ denote the largest integer not greater than $A$. Solve the equation: $[(5 + 6x)/8] = (15x-7)/5$ . [b]8.5.[/b] In some state, every two cities are connected by a road. Each road is only allowed to move in one direction. Prove that there is a city from which you can travel around everything. state, having visited each city exactly once. [b]8.6[/b] Find all eights of prime numbers such that the sum of the squares of the numbers in the eight is 992 less than their quadruple product. [hide=original wording]Найдите все восьмерки простых чисел такие, что сумма квадратов чисел в восьмерке на 992 меньше, чем их учетверенное произведение.[/hide] PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988081_1965_leningrad_math_olympiad]here[/url].

2021 Novosibirsk Oral Olympiad in Geometry, 3

Prove that in a triangle one of the sides is twice as large as the other if and only if a median and an angle bisector of this triangle are perpendicular

1994 All-Russian Olympiad, 2

Two circles $S_1$ and $S_2$ touch externally at $F$. their external common tangent touches $S_1$ at $A$ and $S_2$ at $B$. A line, parallel to $AB$ and tangent to $S_2$ at $C$, intersects $S_1$ at $D$ and $E$. Prove that points $A,F,C$ are collinear. (A. Kalinin)

2008 HMNT, 2

Tags: geometry
Let $ABC$ be a triangle, and let $M$ be the midpoint of side $AB$. If $AB$ is $17$ units long and $CM$ is $8$ units long, find the maximum possible value of the area of $ABC$.

2008 AMC 12/AHSME, 14

What is the area of the region defined by the inequality $ |3x\minus{}18|\plus{}|2y\plus{}7|\le 3$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac{9}{2} \qquad \textbf{(E)}\ 5$

2014 Saudi Arabia GMO TST, 1

Let $ABC$ be a triangle with $\angle A < \angle B \le \angle C$, $M$ and $N$ the midpoints of sides $CA$ and $AB$, respectively, and $P$ and $Q$ the projections of $B$ and $C$ on the medians $CN$ and $BM$, respectively. Prove that the quadrilateral $MNPQ$ is cyclic.

EMCC Team Rounds, 2022

[b]p1.[/b] Compute $1 + 3 + 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55$. [b]p2.[/b] Given that $a$, $b$, and $c$ are positive integers such that $a+b = 9$ and $bc = 30$, find the minimum possible value of $a + c$. [b]p3.[/b] Points $X$ and $Y$ lie outside regular pentagon $ABCDE$ such that $ABX$ and $DEY$ are equilateral triangles. Find the degree measure of $\angle XCY$ . [b]p4.[/b] Let $N$ be the product of the positive integer divisors of $8!$, including itself. The largest integer power of $2$ that divides $N$ is $2^k$. Compute $k$. [b]p5.[/b] Let $A=(-20, 22)$, $B = (k, 0)$, and $C = (202, 2)$ be points on the coordinate plane. Given that $\angle ABC = 90^o$, find the sum of all possible values of $k$. [b]p6.[/b] Tej is typing a string of $L$s and $O$s that consists of exactly $7$ $L$s and $4$ $O$s. How many different strings can he type that do not contain the substring ‘$LOL$’ anywhere? A substring is a sequence of consecutive letters contained within the original string. [b]p7.[/b] How many ordered triples of integers $(a, b, c)$ satisfy both $a+b-c = 12$ and $a^2+b^2-c^2 = 24$? [b]p8.[/b] For how many three-digit base-$7$ numbers $\overline{ABC}_7$ does $\overline{ABC}_7$ divide $\overline{ABC}_{10}$? (Note: $\overline{ABC}_D$ refers to the number whose digits in base $D$ are, from left to right, $A$, $B$, and $C$; for example, $\overline{123}_4$ equals $27$ in base ten). [b]p9.[/b] Natasha is sitting on one of the $35$ squares of a $5$-by-$7$ grid of squares. Wanda wants to walk through every square on the board exactly once except the one Natasha is on, starting and ending on any $2$ squares she chooses, such that from any square she can only go to an adjacent square (two squares are adjacent if they share an edge). How many squares can Natasha choose to sit on such that Wanda cannot go on her walk? [b]p10.[/b] In triangle $ABC$, $AB = 13$, $BC = 14$, and $CA = 15$. Point $P$ lies inside $ABC$ and points $D,E$, and $F$ lie on sides $BC$, $CA$, and $AB$, respectively, so that $PD \perp BC$, $PE \perp CA$, and $PF \perp AB$. Given that $PD$, $PE$, and $PF$ are all integers, find the sum of all possible distinct values of $PD \cdot PE \cdot PF$. [b]p11.[/b] A palindrome is a positive integer which is the same when read forwards or backwards. Find the sum of the two smallest palindromes that are multiples of $137$. [b]p12.[/b] Let $P(x) = x^2+px+q$ be a quadratic polynomial with positive integer coefficients. Compute the least possible value of p such that 220 divides p and the equation $P(x^3) = P(x)$ has at least four distinct integer solutions. [b]p13.[/b] Everyone at a math club is either a truth-teller, a liar, or a piggybacker. A truth-teller always tells the truth, a liar always lies, and a piggybacker will answer in the style of the previous person who spoke (i.e., if the person before told the truth, they will tell the truth, and if the person before lied, then they will lie). If a piggybacker is the first one to talk, they will randomly either tell the truth or lie. Four seniors in the math club were interviewed and here was their conversation: Neil: There are two liars among us. Lucy: Neil is a piggybacker. Kevin: Excluding me, there are more truth-tellers than liars here. Neil: Actually, there are more liars than truth-tellers if we exclude Kevin. Jacob: One plus one equals three. Define the base-$4$ number $M = \overline{NLKJ}_4$, where each digit is $1$ for a truth-teller, $2$ for a piggybacker, and $3$ for a liar ($N$ corresponds to Neil, $L$ to Lucy, $K$ corresponds to Kevin, and $J$ corresponds to Jacob). What is the sum of all possible values of $M$, expressed in base $10$? [b]p14.[/b] An equilateral triangle of side length $8$ is tiled by $64$ equilateral triangles of unit side length to form a triangular grid. Initially, each triangular cell is either living or dead. The grid evolves over time under the following rule: every minute, if a dead cell is edge-adjacent to at least two living cells, then that cell becomes living, and any living cell remains living. Given that every cell in the grid eventually evolves to be living, what is the minimum possible number of living cells in the initial grid? [b]p15.[/b] In triangle $ABC$, $AB = 7$, $BC = 11$, and $CA = 13$. Let $\Gamma$ be the circumcircle of $ABC$ and let $M$, $N$, and $P$ be the midpoints of minor arcs $BC$ , $CA$, and $AB$ of $\Gamma$, respectively. Given that $K$ denotes the area of $ABC$ and $L$ denotes the area of the intersection of $ABC$ and $MNP$, the ratio $L/K$ can be written as $a/b$ , where $a$ and $b$ are relatively prime positive integers. Compute $a + b$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Romanian Masters In Mathematics, 5

Let $n$ be a given positive integer. Say that a set $K$ of points with integer coordinates in the plane is connected if for every pair of points $R, S\in K$, there exists a positive integer $\ell$ and a sequence $R=T_0,T_1, T_2,\ldots ,T_{\ell}=S$ of points in $K$, where each $T_i$ is distance $1$ away from $T_{i+1}$. For such a set $K$, we define the set of vectors \[\Delta(K)=\{\overrightarrow{RS}\mid R, S\in K\}\] What is the maximum value of $|\Delta(K)|$ over all connected sets $K$ of $2n+1$ points with integer coordinates in the plane? [i]Grigory Chelnokov, Russia[/i]

2016 CCA Math Bonanza, I6

Let $a,b,c$ be non-zero real numbers. The lines $ax + by = c$ and $bx + cy = a$ are perpendicular and intersect at a point $P$ such that $P$ also lies on the line $y=2x$. Compute the coordinates of point $P$. [i]2016 CCA Math Bonanza Individual #6[/i]

2016 Dutch IMO TST, 2

In a $2^n \times 2^n$ square with $n$ positive integer is covered with at least two non-overlapping rectangle pieces with integer dimensions and a power of two as surface. Prove that two rectangles of the covering have the same dimensions (Two rectangles have the same dimensions as they have the same width and the same height, wherein they, not allowed to be rotated.)

2003 All-Russian Olympiad, 4

Let $B$ and $C$ be arbitrary points on sides $AP$ and $PD$ respectively of an acute triangle $APD$. The diagonals of the quadrilateral $ABCD$ meet at $Q$, and $H_1,H_2$ are the orthocenters of triangles $APD$ and $BPC$, respectively. Prove that if the line $H_1H_2$ passes through the intersection point $X \ (X \neq Q)$ of the circumcircles of triangles $ABQ$ and $CDQ$, then it also passes through the intersection point $Y \ (Y \neq Q)$ of the circumcircles of triangles $BCQ$ and $ADQ.$

2015 BMT Spring, Tie 1

Tags: geometry
Let $ABCD$ be a parallelogram. Suppose that $E$ is on line $DC$ such that $C$ lies on segment $ED$. Then say lines $AE$ and $BD$ intersect at $X$ and lines $CX$ intersects AB at F. If $AB = 7$,$ BC = 13$, and $CE = 91$, then find $\frac{AF}{FB}$.

2017 China Team Selection Test, 2

Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.

1998 Irish Math Olympiad, 3

Show that no integer of the form $ xyxy$ in base $ 10$ can be a perfect cube. Find the smallest base $ b>1$ for which there is a perfect cube of the form $ xyxy$ in base $ b$.

2016 Nordic, 2

Let $ABCD$ be a cyclic quadrilateral satysfing $AB=AD$ and $AB+BC=CD$. Determine $\measuredangle CDA$.

2018 Germany Team Selection Test, 2

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

2009 Germany Team Selection Test, 1

Tags: geometry
Let $ ABCD$ be a chordal/cyclic quadrilateral. Consider points $ P,Q$ on $ AB$ and $ R,S$ on $ CD$ with \[ \overline{AP}: \overline{PB} \equal{} \overline{CS}: \overline{SD}, \quad \overline{AQ}: \overline{QB} \equal{} \overline{CR}: \overline{RD}.\] How to choose $ P,Q,R,S$ such that $ \overline{PR} \cdot \overline{AB} \plus{} \overline{QS} \cdot \overline{CD}$ is minimal?