Found problems: 25757
2000 Spain Mathematical Olympiad, 3
Two circles $C_1$ and $C_2$ with the respective radii $r_1$ and $r_2$ intersect in $A$ and $B.$ A variable line $r$ through $B$ meets $C_1$ and $C_2$ again at $P_r$ and $Q_r$ respectively. Prove that there exists a point $M,$ depending only on $C_1$ and $C_2,$ such that the perpendicular bisector of each segment $P_rQ_r$ passes through $M.$
1969 IMO Longlists, 70
$(YUG 2)$ A park has the shape of a convex pentagon of area $50000\sqrt{3} m^2$. A man standing at an interior point $O$ of the park notices that he stands at a distance of at most $200 m$ from each vertex of the pentagon. Prove that he stands at a distance of at least $100 m$ from each side of the pentagon.
2018 Yasinsky Geometry Olympiad, 2
Let $P$ the intersection point of the diagonals of a convex quadrilateral $ABCD$. It is known that the area of triangles $ABC$, $BCD$ and $DAP$ is equal to $8 cm^2$, $9 cm^2$ and $10 cm^2$. Find the area of the quadrilateral $ABCD$.
1999 Bosnia and Herzegovina Team Selection Test, 2
Prove the inequality $$\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c} \geq 3\sqrt{3}R$$ in triangle $ABC$ where $a$, $b$ and $c$ are sides of triangle and $R$ radius of circumcircle of $ABC$
1965 Swedish Mathematical Competition, 1
The feet of the altitudes in the triangle $ABC$ are $A', B', C'$. Find the angles of $A'B'C'$ in terms of the angles $A, B, C$. Show that the largest angle in $A'B'C'$ is at least as big as the largest angle in $ABC$. When is it equal?
2008 Middle European Mathematical Olympiad, 3
Let $ ABC$ be an isosceles triangle with $ AC \equal{} BC.$ Its incircle touches $ AB$ in $ D$ and $ BC$ in $ E.$ A line distinct of $ AE$ goes through $ A$ and intersects the incircle in $ F$ and $ G.$ Line $ AB$ intersects line $ EF$ and $ EG$ in $ K$ and $ L,$ respectively. Prove that $ DK \equal{} DL.$
1997 Iran MO (2nd round), 2
Let segments $KN,KL$ be tangent to circle $C$ at points $N,L$, respectively. $M$ is a point on the extension of the segment $KN$ and $P$ is the other meet point of the circle $C$ and the circumcircle of $\triangle KLM$. $Q$ is on $ML$ such that $NQ$ is perpendicular to $ML$. Prove that
\[ \angle MPQ=2\angle KML. \]
2012 Belarus Team Selection Test, 2
Let $\Gamma$ be the incircle of an non-isosceles triangle $ABC$, $I$ be it’s center. Let $A_1, B_1, C_1$ be the tangency points of $\Gamma$ with the sides $BC, AC, AB$, respectively. Let $A_2 = \Gamma \cap AA_1, M = C_1B_1 \cup AI$, $P$ and $Q$ be the other (different from $A_1, A_2$) intersection points of $A_1M, A_2M$ and $\Gamma$, respectively. Prove that $A, P, Q$ are collinear.
(A. Voidelevich)
2019 Romania Team Selection Test, 2
Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i \equal{} 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i\plus{}1}$ and $ A_iA_{i\plus{}2}$ (the addition of indices being mod 3). Let $ B_i, i \equal{} 1, 2, 3,$ be the second point of intersection of $ C_{i\plus{}1}$ and $ C_{i\plus{}2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.
2018 Hanoi Open Mathematics Competitions, 12
Let ABCD be a rectangle with $45^o < \angle ADB < 60^o$. The diagonals $AC$ and$ BD$ intersect at $O$. A line passing through $O$ and perpendicular to $BD$ meets $AD$ and $CD$ at $M$ and $N$ respectively. Let $K$ be a point on side $BC$ such that $MK \parallel AC$. Show that $\angle MKN = 90^o$.
[img]https://cdn.artofproblemsolving.com/attachments/4/1/1d37b96cebaea3409ade7ce6711ac2d3fc2ef9.png[/img]
2015 LMT, Team Round
[hide=Intro]The answers to each of the ten questions in this section are integers containing only the digits $ 1$ through $ 8$, inclusive. Each answer can be written into the grid on the answer sheet, starting from the cell with the problem number, and continuing across or down until the entire answer has been written. Answers may cross dark lines. If the answers are correctly filled in, it will be uniquely possible to write an integer from $ 1$ to $ 8$ in every cell of the grid, so that each number will appear exactly once in every row, every column, and every marked $2$ by $4$ box. You will get $7$ points for every correctly filled answer, and a $15$ point bonus for filling in every gridcell. It will help to work back and forth between the grid and the problems, although every problem is uniquely solvable on its own.
Please write clearly within the boxes. No points will be given for a cell without a number, with multiple
numbers, or with illegible handwriting.[/hide]
[img]https://cdn.artofproblemsolving.com/attachments/9/b/f4db097a9e3c2602b8608be64f06498bd9d58c.png[/img]
[b]1 ACROSS:[/b] Jack puts $ 10$ red marbles, $ 8$ green marbles and 4 blue marbles in a bag. If he takes out $11$ marbles, what is the expected number of green marbles taken out?
[b]2 DOWN:[/b] What is the closest integer to $6\sqrt{35}$ ?
[b]3 ACROSS: [/b]Alan writes the numbers $ 1$ to $64$ in binary on a piece of paper without leading zeroes. How many more times will he have written the digit $ 1$ than the digit $0$?
[b]4 ACROSS:[/b] Integers a and b are chosen such that $-50 < a, b \le 50$. How many ordered pairs $(a, b)$ satisfy the below equation? $$(a + b + 2)(a + 2b + 1) = b$$
[b]5 DOWN: [/b]Zach writes the numbers $ 1$ through $64$ in binary on a piece of paper without leading zeroes. How many times will he have written the two-digit sequence “$10$”?
[b]6 ACROSS:[/b] If you are in a car that travels at $60$ miles per hour, $\$1$ is worth $121$ yen, there are $8$ pints in a gallon, your car gets $10$ miles per gallon, a cup of coffee is worth $\$2$, there are 2 cups in a pint, a gallon of gas costs $\$1.50$, 1 mile is about $1.6$ kilometers, and you are going to a coffee shop 32 kilometers away for a gallon of coffee, how much, in yen, will it cost?
[b]7 DOWN:[/b] Clive randomly orders the letters of “MIXING THE LETTERS, MAN”. If $\frac{p}{m^nq}$ is the probability that he gets “LMT IS AN EXTREME THING” where p and q are odd integers, and $m$ is a prime number, then what is $m + n$?
[b]8 ACROSS:[/b] Joe is playing darts. A dartboard has scores of $10, 7$, and $4$ on it. If Joe can throw $12$ darts, how many possible scores can he end up with?
[b]9 ACROSS:[/b] What is the maximum number of bounded regions that $6$ overlapping ellipses can cut the plane into?
[b]10 DOWN:[/b] Let $ABC$ be an equilateral triangle, such that $A$ and $B$ both lie on a unit circle with center $O$. What is the maximum distance between $O$ and $C$? Write your answer be in the form $\frac{a\sqrt{b}}{c}$ where $b$ is not divisible by the square of any prime, and $a$ and $c$ share no common factor. What is $abc$ ?
PS. You had better use hide for answers.
LMT Speed Rounds, 2022 S
[b]p1.[/b] Aidan walks into a skyscraper’s first floor lobby and takes the elevator up $50$ floors. After exiting the elevator, he takes the stairs up another $10$ floors, then takes the elevator down $30$ floors. Find the floor number Aidan is currently on.
[b]p2.[/b] Jeff flips a fair coin twice and Kaylee rolls a standard $6$-sided die. The probability that Jeff flips $2$ heads and Kaylee rolls a $4$ is $P$. Find $\frac{1}{P}$ .
[b]p3.[/b] Given that $a\odot b = a + \frac{a}{b}$ , find $(4\odot 2)\odot 3$.
[b]p4.[/b] The following star is created by gluing together twelve equilateral triangles each of side length $3$. Find the outer perimeter of the star.
[img]https://cdn.artofproblemsolving.com/attachments/e/6/ad63edbf93c5b7d4c7e5d68da2b4632099d180.png[/img]
[b]p5.[/b] In Lexington High School’sMath Team, there are $40$ students: $20$ of whom do science bowl and $22$ of whom who do LexMACS. What is the least possible number of students who do both science bowl and LexMACS?
[b]p6.[/b] What is the least positive integer multiple of $3$ whose digits consist of only $0$s and $1$s? The number does not need to have both digits.
[b]p7.[/b] Two fair $6$-sided dice are rolled. The probability that the product of the numbers rolled is at least $30$ can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p8.[/b] At the LHSMath Team Store, $5$ hoodies and $1$ jacket cost $\$13$, and $5$ jackets and $1$ hoodie cost $\$17$. Find how much $15$ jackets and $15$ hoodies cost, in dollars.
[b]p9.[/b] Eric wants to eat ice cream. He can choose between $3$ options of spherical ice cream scoops. The first option consists of $4$ scoops each with a radius of $3$ inches, which costs a total of $\$3$. The second option consists of a scoop with radius $4$ inches, which costs a total of $\$2$. The third option consists of $5$ scoops each with diameter $2$ inches, which costs a total of $\$1$. The greatest possible ratio of volume to cost of ice cream Eric can buy is nπ cubic inches per dollar. Find $3n$.
[b]p10.[/b] Jen claims that she has lived during at least part of each of five decades. What is the least possible age that Jen could be? (Assume that age is always rounded down to the nearest integer.)
[b]p11.[/b] A positive integer $n$ is called Maisylike if and only if $n$ has fewer factors than $n -1$. Find the sum of the values of $n$ that are Maisylike, between $2$ and $10$, inclusive.
[b]p12.[/b] When Ginny goes to the nearby boba shop, there is a $30\%$ chance that the employee gets her drink order wrong. If the drink she receives is not the one she ordered, there is a $60\%$ chance that she will drink it anyways. Given that Ginny drank a milk tea today, the probability she ordered it can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find the value of $a +b$.
[b]p13.[/b] Alex selects an integer $m$ between $1$ and $100$, inclusive. He notices there are the same number of multiples of $5$ as multiples of $7$ betweenm and $m+9$, inclusive. Find how many numbers Alex could have picked.
[b]p14.[/b] In LMTown there are only rainy and sunny days. If it rains one day there’s a $30\%$ chance that it will rain the next day. If it’s sunny one day there’s a $90\%$ chance it will be sunny the next day. Over n days, as n approaches infinity, the percentage of rainy days approaches $k\%$. Find $10k$.
[b]p15.[/b] A bag of letters contains $3$ L’s, $3$ M’s, and $3$ T’s. Aidan picks three letters at random from the bag with replacement, and Andrew picks three letters at random fromthe bag without replacement. Given that the probability that both Aidan and Andrew pick one each of L, M, and T can be written as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, find $m+n$.
[b]p16.[/b] Circle $\omega$ is inscribed in a square with side length $2$. In each corner tangent to $2$ of the square’s sides and externally tangent to $\omega$ is another circle. The radius of each of the smaller $4$ circles can be written as $(a -\sqrt{b})$ where $a$ and $b$ are positive integers. Find $a +b$.
[img]https://cdn.artofproblemsolving.com/attachments/d/a/c76a780ac857f745067a8d6c4433efdace2dbb.png[/img]
[b]p17.[/b] In the nonexistent land of Lexingtopia, there are $10$ days in the year, and the Lexingtopian Math Society has $5$ members. The probability that no two of the LexingtopianMath Society’s members share the same birthday can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p18.[/b] Let $D(n)$ be the number of diagonals in a regular $n$-gon. Find $$\sum^{26}_{n=3} D(n).$$
[b]p19.[/b] Given a square $A_0B_0C_0D_0$ as shown below with side length $1$, for all nonnegative integers $n$, construct points $A_{n+1}$, $B_{n+1}$, $C_{n+1}$, and $D_{n+1}$ on $A_nB_n$, $B_nC_n$, $C_nD_n$, and $D_nA_n$, respectively, such that $$\frac{A_n A_{n+1}}{A_{n+1}B_n}=\frac{B_nB_{n+1}}{B_{n+1}C_n} =\frac{C_nC_{n+1}}{C_{n+1}D_n}=\frac{D_nD_{n+1}}{D_{n+1}A_n} =\frac34.$$
[img]https://cdn.artofproblemsolving.com/attachments/6/a/56a435787db0efba7ab38e8401cf7b06cd059a.png[/img]
The sum of the series $$\sum^{\infty}_{i=0} [A_iB_iC_iD_i ] = [A_0B_0C_0D_0]+[A_1B_1C_1D_1]+[A_2B_2C_2D_2]...$$ where $[P]$ denotes the area of polygon $P$ can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p20.[/b] Let $m$ and $n$ be two real numbers such that $$\frac{2}{n}+m = 9$$
$$\frac{2}{m}+n = 1$$ Find the sum of all possible values of $m$ plus the sumof all possible values of $n$.
[b]p21.[/b] Let $\sigma (x)$ denote the sum of the positive divisors of $x$. Find the smallest prime $p$ such that $$\sigma (p!) \ge 20 \cdot \sigma ([p -1]!).$$
[b]p22.[/b] Let $\vartriangle ABC$ be an isosceles triangle with $AB = AC$. Let $M$ be the midpoint of side $\overline{AB}$. Suppose there exists a point X on the circle passing through points $A$, $M$, and $C$ such that $BMCX$ is a parallelogram and $M$ and $X$ are on opposite sides of line $BC$. Let segments $\overline{AX}$ and $\overline{BC}$ intersect at a point $Y$ . Given that $BY = 8$, find $AY^2$.
[b]p23.[/b] Kevin chooses $2$ integers between $1$ and $100$, inclusive. Every minute, Corey can choose a set of numbers and Kevin will tell him how many of the $2$ chosen integers are in the set. How many minutes does Corey need until he is certain of Kevin’s $2$ chosen numbers?
[b]p24.[/b] Evaluate $$1^{-1} \cdot 2^{-1} +2^{-1} \cdot 3^{-1} +3^{-1} \cdot 4^{-1} +...+(2015)^{-1} \cdot (2016)^{-1} \,\,\, (mod \,\,\,2017).$$
[b]p25.[/b] In scalene $\vartriangle ABC$, construct point $D$ on the opposite side of $AC$ as $B$ such that $\angle ABD = \angle DBC = \angle BC A$ and $AD =DC$. Let $I$ be the incenter of $\vartriangle ABC$. Given that $BC = 64$ and $AD = 225$, find$ BI$ .
[img]https://cdn.artofproblemsolving.com/attachments/b/1/5852dd3eaace79c9da0fd518cfdcd5dc13aecf.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
Durer Math Competition CD Finals - geometry, 2015.D4
The projection of the vertex $C$ of the rectangle $ABCD$ on the diagonal $BD$ is $E$. The projections of $E$ on $AB$ and $AD$ are $F$ and $G$ respectively. Prove that $$AF^{2/3} + AG^{2/3} = AC^{2/3}$$
.
VMEO III 2006, 12.1
Given a triangle $ABC$ and a point $K$ . The lines $AK$,$BK$,$CK$ hit the opposite side of the triangle at $D,E,F$ respectively. On the exterior of $ABC$, we construct three pairs of similar triangles: $BDM$,$DCN$ on $BD$,$DC$, $CEP$,$EAQ$ on $CE$,$EA$, and $AFR$,$FBS$ on $AF$, $FB$. The lines $MN$,$PQ$,$RS$ intersect each other form a triangle $XYZ$. Prove that $AX$,$BY$,$CZ$ are concurrent.
1996 All-Russian Olympiad Regional Round, 10.3
Given an angle with vertex $B$. Construct point $M$ as follows. Let us take an arbitrary isosceles trapezoid whose sides lie on the sides of a given angle. Through two opposite ones draw tangents to the vertices of the circle circumscribed around it. Let $M$ denote the point of intersection of these tangents. What figure do all such points $M$ form?
1968 IMO Shortlist, 5
Let $h_n$ be the apothem (distance from the center to one of the sides) of a regular $n$-gon ($n \geq 3$) inscribed in a circle of radius $r$. Prove the inequality
\[(n + 1)h_n+1 - nh_n > r.\]
Also prove that if $r$ on the right side is replaced with a greater number, the inequality will not remain true for all $n \geq 3.$
2011 Saint Petersburg Mathematical Olympiad, 2
$ABC$-triangle with circumcenter $O$ and $\angle B=30$. $BO$ intersect $AC$ at $K$. $L$ - midpoint of arc $OC$ of circumcircle $KOC$, that does not contains $K$. Prove, that $A,B,L,K$ are concyclic.
2015 IFYM, Sozopol, 6
In $\Delta ABC$ points $A_1$, $B_1$, and $C_1$ are the tangential points of the excircles of $ABC$ with its sides.
a) Prove that $AA_1$, $BB_1$, and $CC_1$ intersect in one point $N$.
b) If $AC+BC=3AB$, prove that the center of the inscribed circle of $ABC$, its tangential point with $AB$, and the point $N$ are collinear.
1977 Poland - Second Round, 4
A pyramid with a quadrangular base is given such that each pair of circles inscribed in adjacent faces has a common point. Prove that the touchpoints of these circles with the base of the pyramid lie on one circle.
2020 Novosibirsk Oral Olympiad in Geometry, 6
Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.
2019 All-Russian Olympiad, 5
Radii of five concentric circles $\omega_0,\omega_1,\omega_2,\omega_3,\omega_4$ form a geometric progression with common ratio $q$ in this order. What is the maximal value of $q$ for which it's possible to draw a broken line $A_0A_1A_2A_3A_4$ consisting of four equal segments such that $A_i$ lies on $\omega_i$ for every $i=\overline{0,4}$?
[hide=thanks ]Thanks to the user Vlados021 for translating the problem.[/hide]
2020 LIMIT Category 1, 3
The diagnols $\overline{AC}$ and $\overline{BD}$ of a quaderilateral $ABCD$ meet at $O$. Let $s_1$ be the area of $\triangle{AOB}$ and $s_2$ be the area of $\triangle{OCD}$. Then show that $$\sqrt{s_1}+\sqrt{s_2} \leq \sqrt{s}$$ Also find a geometrical condition for equality to hold (By geometrical condition we mean something like parallel lines, perpendicular lines,bisecting lines etc.)
2019 Belarus Team Selection Test, 3.2
A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$.
[i]Proposed by Mongolia[/i]
1999 Belarusian National Olympiad, 4
A circle is inscribed in the trapezoid [i]ABCD[/i]. Let [i]K, L, M, N[/i] be the points of tangency of this circle with the diagonals [i]AC[/i] and [i]BD[/i], respectively ([i]K[/i] is between [i]A[/i] and [i]L[/i], and [i]M[/i] is between [i]B[/i] and [i]N[/i]). Given that $AK\cdot LC=16$ and $BM\cdot ND=\frac94$, find the radius of the circle.
[color=red][Moderator edit: A solution of this problem can be found on http://www.ajorza.org/math/mathfiles/scans/belarus.pdf , page 20 (the statement of the problem is on page 6). The author of the problem is I. Voronovich.][/color]
2011 AMC 10, 25
Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$?
$ \textbf{(A)}\ \frac{1509}{8} \qquad
\textbf{(B)}\ \frac{1509}{32} \qquad
\textbf{(C)}\ \frac{1509}{64} \qquad
\textbf{(D)}\ \frac{1509}{128} \qquad
\textbf{(E)}\ \frac{1509}{256} $