This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

VII Soros Olympiad 2000 - 01, 8.6

Tags: area , geometry
Three cyclists started simultaneously on three parallel straight paths (at the time of the start, the athletes were on the same straight line). Cyclists travel at constant speeds. $1$ second after the start, the triangle formed by the cyclists had an area of ​​$5$ m$^2$. What area will such a triangle have in $10$ seconds after the start?

2005 France Team Selection Test, 5

Let $ABC$ be a triangle such that $BC=AC+\frac{1}{2}AB$. Let $P$ be a point of $AB$ such that $AP=3PB$. Show that $\widehat{PAC} = 2 \widehat{CPA}.$

2016 APMC, 4

Let $ABC$ be a triangle with $AB\neq AC$. Let the excircle $\omega$ opposite $A$ touch $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. Suppose $X$ and $Y$ are points on the segments $AC$ and $AB$, respectively, such that $XY$ and $BC$ are parallel, and let $\Gamma$ be a circle through $X$ and $Y$ which is externally tangent to $\omega$ at $Z$. Prove that the lines $EF$, $DZ$, and $XY$ are concurrent.

1988 Swedish Mathematical Competition, 1

Let $a > b > c$ be sides of a triangle and $h_a,h_b,h_c$ be the corresponding altitudes. Prove that $a+h_a > b+h_b > c+h_c$.

2019 Brazil National Olympiad, 1

Tags: geometry , incenter
Let $\omega_1$ and $\omega_2$ be two circles with centers $C_1$ and $C_2$, respectively, which intersect at two points $P$ and $Q$. Suppose that the circumcircle of triangle $PC_1C_2$ intersects $\omega_1$ at $A \neq P$ and $\omega_2$ at $B \neq P$. Suppose further that $Q$ is inside the triangle $PAB$. Show that $Q$ is the incenter of triangle $PAB$.

2011 Akdeniz University MO, 5

Let $ABC$ be an acute-angled triangle with $H$ orthocenter, $O$ circumcenter. $[AH]$'s perpendicular bisector intersects with $[AB]$ and $[AC]$ at $D$ and $E$ respectively. Prove that $$\angle ADE =\angle BDO$$

1983 Poland - Second Round, 1

On a plane with a fixed coordinate system, there is a convex polygon whose all vertices have integer coordinates. Prove that twice the area of this polygon is an integer.

2008 AIME Problems, 14

Let $ \overline{AB}$ be a diameter of circle $ \omega$. Extend $ \overline{AB}$ through $ A$ to $ C$. Point $ T$ lies on $ \omega$ so that line $ CT$ is tangent to $ \omega$. Point $ P$ is the foot of the perpendicular from $ A$ to line $ CT$. Suppose $ AB \equal{} 18$, and let $ m$ denote the maximum possible length of segment $ BP$. Find $ m^{2}$.

1936 Moscow Mathematical Olympiad, 028

Given an angle less than $180^o$, and a point $M$ outside the angle. Draw a line through $M$ so that the triangle, whose vertices are the vertex of the angle and the intersection points of its legs with the line drawn, has a given perimeter.

2004 Romania Team Selection Test, 11

Let $I$ be the incenter of the non-isosceles triangle $ABC$ and let $A',B',C'$ be the tangency points of the incircle with the sides $BC,CA,AB$ respectively. The lines $AA'$ and $BB'$ intersect in $P$, the lines $AC$ and $A'C'$ in $M$ and the lines $B'C'$ and $BC$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular. [i]Alternative formulation.[/i] The incircle of a non-isosceles triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$ and $AB$ in $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$, respectively. The lines $AA^{\prime}$ and $BB^{\prime}$ intersect in $P$, the lines $AC$ and $A^{\prime}C^{\prime}$ intersect in $M$, and the lines $BC$ and $B^{\prime}C^{\prime}$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.

Swiss NMO - geometry, 2012.3

The circles $k_1$ and $k_2$ intersect at points $D$ and $P$. The common tangent of the two circles on the side of $D$ touches $k_1$ at $A$ and $k_2$ at $B$. The straight line $AD$ intersects $k_2$ for a second time at $C$. Let $M$ be the center of the segment $BC$. Show that $ \angle DPM = \angle BDC$ .

2008 AMC 10, 19

Rectangle $ PQRS$ lies in a plane with $ PQ = RS = 2$ and $ QR = SP = 6$. The rectangle is rotated $ 90^\circ$ clockwise about $ R$, then rotated $ 90^\circ$ clockwise about the point that $ S$ moved to after the first rotation. What is the length of the path traveled by point $ P$? ${ \textbf{(A)}\ (2\sqrt3 + \sqrt5})\pi \qquad \textbf{(B)}\ 6\pi \qquad \textbf{(C)}\ (3 + \sqrt {10})\pi \qquad \textbf{(D)}\ (\sqrt3 + 2\sqrt5)\pi \\ \textbf{(E)}\ 2\sqrt {10}\pi$

2002 Tuymaada Olympiad, 3

A circle having common centre with the circumcircle of triangle $ABC$ meets the sides of the triangle at six points forming convex hexagon $A_{1}A_{2}B_{1}B_{2}C_{1}C_{2}$ ($A_{1}$ and $A_{2}$ lie on $BC$, $B_{1}$ and $B_{2}$ lie on $AC$, $C_{1}$ and $C_{2}$ lie on $AB$). If $A_{1}B_{1}$ is parallel to the bisector of angle $B$, prove that $A_{2}C_{2}$ is parallel to the bisector of angle $C$. [i]Proposed by S. Berlov[/i]

VMEO IV 2015, 10.2

Given triangle $ABC$ and $P,Q$ are two isogonal conjugate points in $\triangle ABC$. $AP,AQ$ intersects $(QBC)$ and $(PBC)$ at $M,N$, respectively ( $M,N$ be inside triangle $ABC$) 1. Prove that $M,N,P,Q$ locate on a circle - named $(I)$ 2. $MN\cap PQ$ at $J$. Prove that $IJ$ passed through a fixed line when $P,Q$ changed

2012 India IMO Training Camp, 1

A quadrilateral $ABCD$ without parallel sides is circumscribed around a circle with centre $O$. Prove that $O$ is a point of intersection of middle lines of quadrilateral $ABCD$ (i.e. barycentre of points $A,\,B,\,C,\,D$) iff $OA\cdot OC=OB\cdot OD$.

2016 IFYM, Sozopol, 5

Tags: geometry
We are given a $\Delta ABC$ with $\angle BAC=39^\circ$ and $\angle ABC=77^\circ$. Points $M$ and $N$ are chosen on $BC$ and $CA$ respectively, so that $\angle MAB=34^\circ$ and $\angle NBA=26^\circ$. Find $\angle BNM$.

2021 Sharygin Geometry Olympiad, 6

Three circles $\Gamma_1,\Gamma_2,\Gamma_3$ are inscribed into an angle(the radius of $\Gamma_1$ is the minimal, and the radius of $\Gamma_3$ is the maximal) in such a way that $\Gamma_2$ touches $\Gamma_1$ and $\Gamma_3$ at points $A$ and $B$ respectively. Let $\ell$ be a tangent to $A$ to $\Gamma_1$. Consider circles $\omega$ touching $\Gamma_1$ and $\ell$. Find the locus of meeting points of common internal tangents to $\omega$ and $\Gamma_3$.

1990 AIME Problems, 1

The increasing sequence $2,3,5,6,7,10,11,\ldots$ consists of all positive integers that are neither the square nor the cube of a positive integer. Find the 500th term of this sequence.

2013 Online Math Open Problems, 21

Let $ABC$ be a triangle with $AB = 5$, $AC = 8$, and $BC = 7$. Let $D$ be on side $AC$ such that $AD = 5$ and $CD = 3$. Let $I$ be the incenter of triangle $ABC$ and $E$ be the intersection of the perpendicular bisectors of $\overline{ID}$ and $\overline{BC}$. Suppose $DE = \frac{a\sqrt{b}}{c}$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$. [i]Proposed by Ray Li[/i]

2013 HMNT, 4

Tags: geometry
Consider triangle $ABC$ with side lengths $AB = 4$, $BC = 7$, and $AC = 8$. Let $M$ be the midpoint of segment $AB$, and let $N$ be the point on the interior of segment $AC$ that also lies on the circumcircle of triangle $MBC$. Compute $BN$.

Kyiv City MO Juniors 2003+ geometry, 2018.9.51

Tags: geometry , angle , square
Given a circle $\Gamma$ with center at point $O$ and diameter $AB$. $OBDE$ is square, $F$ is the second intersection point of the line $AD$ and the circle $\Gamma$, $C$ is the midpoint of the segment $AF$. Find the value of the angle $OCB$.

2003 Austrian-Polish Competition, 10

What is the smallest number of $5\times 1$ tiles which must be placed on a $31\times 5$ rectangle (each covering exactly $5$ unit squares) so that no further tiles can be placed? How many different ways are there of placing the minimal number (so that further tiles are blocked)? What are the answers for a $52\times 5$ rectangle?

2013-2014 SDML (High School), 8

A right rectangular prism is inscribed within a sphere. The total area of all the faces [of] the prism is $88$, and the total length of all its edges is $48$. What is the surface area of the sphere? $\text{(A) }40\pi\qquad\text{(B) }32\pi\sqrt{2}\qquad\text{(C) }48\pi\qquad\text{(D) }32\pi\sqrt{3}\qquad\text{(E) }56\pi$

1989 AIME Problems, 12

Let $ABCD$ be a tetrahedron with $AB=41$, $AC=7$, $AD=18$, $BC=36$, $BD=27$, and $CD=13$, as shown in the figure. Let $d$ be the distance between the midpoints of edges $AB$ and $CD$. Find $d^{2}$. [asy] pair C=origin, D=(4,11), A=(8,-5), B=(16,0); draw(A--B--C--D--B^^D--A--C); draw(midpoint(A--B)--midpoint(C--D), dashed); label("27", B--D, NE); label("41", A--B, SE); label("7", A--C, SW); label("$d$", midpoint(A--B)--midpoint(C--D), NE); label("18", (7,8), SW); label("13", (3,9), SW); pair point=(7,0); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D));[/asy]

2009 Rioplatense Mathematical Olympiad, Level 3, 2

Let $A$, $B$, $C$, $D$, $E$, $F$, $G$, $H$, $I$ be nine points in space such that $ABCDE$, $ABFGH$, and $GFCDI$ are each regular pentagons with side length $1$. Determine the lengths of the sides of triangle $EHI$.