This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Geometry Mathley 2011-12, 1.1

Let $ABCDEF$ be a hexagon having all interior angles equal to $120^o$ each. Let $P,Q,R, S, T, V$ be the midpoints of the sides of the hexagon $ABCDEF$. Prove the inequality $$p(PQRSTV ) \ge \frac{\sqrt3}{2} p(ABCDEF)$$, where $p(.)$ denotes the perimeter of the polygon. Nguyễn Tiến Lâm

2011 Akdeniz University MO, 4

Let an acute-angled triangle $ABC$'s circumcircle is $S$. $S$'s tangent from $B$ and $C$ intersects at point $M$. A line, lies $M$ and parallel to $[AB]$ intersects with $S$ at points $D$ and $E$, intersect with $[AC]$ at point $F$. Prove that $$[DF]=[FE]$$

2018 Thailand TST, 2

Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.

2018 Estonia Team Selection Test, 7

Let $AD$ be the altitude $ABC$ of an acute triangle. On the line $AD$ are chosen different points $E$ and $F$ so that $|DE |= |DF|$ and point $E$ is in the interior of triangle $ABC$. The circumcircle of triangle $BEF$ intersects $BC$ and $BA$ for second time at points $K$ and $M$ respectively. The circumcircle of the triangle $CEF$ intersects the $CB$ and $CA$ for the second time at points $L$ and $N$ respectively. Prove that the lines $AD, KM$ and $LN$ intersect at one point.

1967 Poland - Second Round, 6

Prove that the points $ A_1, A_2, \ldots, A_n $ ($ n \geq 7 $) located on the surface of the sphere lie on a circle if and only if the planes tangent to the surface of the sphere at these points have a common point or are parallel to one straight line.

III Soros Olympiad 1996 - 97 (Russia), 10.1

At what $a$ does the graph of the function $y = x^4+x^3+ax$ have an axis of symmetry parallel to the axis $Oy$?

2007 Bulgarian Autumn Math Competition, Problem 11.3

In $\triangle ABC$ we have that $CC_{1}$ is an angle bisector. The points $P\in C_{1}B$, $Q\in BC$, $R\in AC$, $S\in AC_{1}$ satisfy $C_{1}P=PQ=QC$ and $CR=RS=SC_{1}$. Prove that $CC_{1}$ bisects $\angle SCP$.

2018 Bosnia And Herzegovina - Regional Olympiad, 3

In triangle $ABC$ given is point $P$ such that $\angle ACP = \angle ABP = 10^{\circ}$, $\angle CAP = 20^{\circ}$ and $\angle BAP = 30^{\circ}$. Prove that $AC=BC$

2006 Princeton University Math Competition, 2

Tags: geometry
In triangle $ABC$, $R$ is the midpoint of $BC$ and $CS = 3SA$. If $x$ is the area of $CRS$, $y$ is the area of $RBT$, $z$ is the area of $ATS$, and $y^2 = xz$, then what is the value of $\frac{AT}{TB}$? Express your answer in the form $\frac{a+b\sqrt{c}}{d}$ , where $a,b,c,d$ are integers, $d$ is positive and as small as possible, and $c$ is squarefree. [img]https://cdn.artofproblemsolving.com/attachments/f/d/65b443628329610ff41d30b95e5ebd0c914f20.jpg[/img]

2014 Chile National Olympiad, 2

Consider an $ABCD$ parallelogram of area $1$. Let $E$ be the center of gravity of the triangle $ABC, F$ the center of gravity of the triangle $BCD, G$ the center of gravity of the triangle $CDA$ and $H$ the center of gravity of the triangle $DAB$. Calculate the area of quadrilateral $EFGH$.

2021 CCA Math Bonanza, I9

Tags: geometry
Points $A$, $B$, $C$, $D$, and $E$ are on the same plane such that $A,E,C$ lie on a line in that order, $B,E,D$ lie on a line in that order, $AE = 1$, $BE = 4$, $CE = 3$, $DE = 2$, and $\angle AEB = 60^\circ$. Let $AB$ and $CD$ intersect at $P$. The square of the area of quadrilateral $PAED$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$? [i]2021 CCA Math Bonanza Individual Round #9[/i]

2004 National Olympiad First Round, 29

Let $M$ be the intersection of the diagonals $AC$ and $BD$ of cyclic quadrilateral $ABCD$. If $|AB|=5$, $|CD|=3$, and $m(\widehat{AMB}) = 60^\circ$, what is the circumradius of the quadrilateral? $ \textbf{(A)}\ 5\sqrt 3 \qquad\textbf{(B)}\ \dfrac {7\sqrt 3}{3} \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{34} $

2005 IMO Shortlist, 1

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

JBMO Geometry Collection, 2009

Let $ ABCDE$ be a convex pentagon such that $ AB\plus{}CD\equal{}BC\plus{}DE$ and $ k$ a circle with center on side $ AE$ that touches the sides $ AB$, $ BC$, $ CD$ and $ DE$ at points $ P$, $ Q$, $ R$ and $ S$ (different from vertices of the pentagon) respectively. Prove that lines $ PS$ and $ AE$ are parallel.

2001 National Olympiad First Round, 9

What is the largest possible area of an isosceles trapezoid in which the largest side is $13$ and the perimeter is $28$? $ \textbf{(A)}\ 13 \qquad\textbf{(B)}\ 24 \qquad\textbf{(C)}\ 27 \qquad\textbf{(D)}\ 28 \qquad\textbf{(E)}\ 30 $

2007 Balkan MO Shortlist, G4

Points $M,N$ and $P$ on the sides $BC, CA$ and $AB$ of $\vartriangle ABC$ are such that $\vartriangle MNP$ is acute. Denote by $h$ and $H$ the lengths of the shortest altitude of $\vartriangle ABC$ and the longest altitude of $\vartriangle MNP$. Prove that $h \le 2H$.

1989 Mexico National Olympiad, 5

Let $C_1$ and $C_2$ be two tangent unit circles inside a circle $C$ of radius $2$. Circle $C_3$ inside $C$ is tangent to the circles $C,C_1,C_2$, and circle $C_4$ inside $C$ is tangent to $C,C_1,C_3$. Prove that the centers of $C,C_1,C_3$ and $C_4$ are vertices of a rectangle.

2008 IMO Shortlist, 2

Given trapezoid $ ABCD$ with parallel sides $ AB$ and $ CD$, assume that there exist points $ E$ on line $ BC$ outside segment $ BC$, and $ F$ inside segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Denote by $ I$ the point of intersection of $ CD$ and $ EF$, and by $ J$ the point of intersection of $ AB$ and $ EF$. Let $ K$ be the midpoint of segment $ EF$, assume it does not lie on line $ AB$. Prove that $ I$ belongs to the circumcircle of $ ABK$ if and only if $ K$ belongs to the circumcircle of $ CDJ$. [i]Proposed by Charles Leytem, Luxembourg[/i]

2015 Cuba MO, 2

Tags: rhombus , geometry
Let $ABCD$ be a convex quadrilateral and let $P$ be the intersection of the diagonals $AC$ and $BD$. The radii of the circles inscribed in the triangles $\vartriangle ABP$, $\vartriangle BCP$, $\vartriangle CDP$ and $\vartriangle DAP$ are the same. Prove that $ABCD$ is a rhombus,

2013 Tournament of Towns, 5

In a quadrilateral $ABCD$, angle $B$ is equal to $150^o$, angle $C$ is right, and sides $AB$ and $CD$ are equal. Determine the angle between $BC$ and the line connecting the midpoints of sides $BC$ and $AD$.

2012 Sharygin Geometry Olympiad, 20

Point $D$ lies on side $AB$ of triangle $ABC$. Let $\omega_1$ and $\Omega_1,\omega_2$ and $\Omega_2$ be the incircles and the excircles (touching segment $AB$) of triangles $ACD$ and $BCD.$ Prove that the common external tangents to $\omega_1$ and $\omega_2,$ $\Omega_1$ and $\Omega_2$ meet on $AB$.

1971 AMC 12/AHSME, 17

Tags: geometry
A circular disk is divided by $2n$ equally spaced radii($n>0$) and one secant line. The maximum number of non-overlapping areas into which the disk can be divided is $\textbf{(A) }2n+1\qquad\textbf{(B) }2n+2\qquad\textbf{(C) }3n-1\qquad\textbf{(D) }3n\qquad \textbf{(E) }3n+1$

2003 Iran MO (3rd Round), 4

XOY is angle in the plane.A,B are variable point on OX,OY such that 1/OA+1/OB=1/K (k is constant).draw two circles with diameter OA and OB.prove that common external tangent to these circles is tangent to the constant circle( ditermine the radius and the locus of its center).

2008 Princeton University Math Competition, A3

Tags: geometry
Consider a $12$-sided regular polygon. If the vertices going clockwise are $A$, $B$, $C$, $D$, $E$, $F$, etc, draw a line between $A$ and $F$, $B$ and $G$, $C$ and $H$, etc. This will form a smaller $12$-sided regular polygon in the center of the larger one. What is the area of the smaller one divided by the area of the larger one?

Estonia Open Senior - geometry, 2017.2.5

The bisector of the exterior angle at vertex $C$ of the triangle $ABC$ intersects the bisector of the interior angle at vertex $B$ in point $K$. Consider the diameter of the circumcircle of the triangle $BCK$ whose one endpoint is $K$. Prove that $A$ lies on this diameter.