Found problems: 25757
Indonesia Regional MO OSP SMA - geometry, 2007.1
Let $ABCD$ be a quadrilateral with $AB = BC = CD = DA$.
(a) Prove that point A must be outside of triangle $BCD$.
(b) Prove that each pair of opposite sides on $ABCD$ is always parallel.
Math Hour Olympiad, Grades 5-7, 2023.67
[u]Round 1[/u]
[b]p1.[/b] Ash is running around town catching Pokémon. Each day, he may add $3, 4$, or $5$ Pokémon to his collection, but he can never add the same number of Pokémon on two consecutive days. What is the smallest number of days it could take for him to collect exactly $100$ Pokémon?
[b]p2.[/b] Jack and Jill have ten buckets. One bucket can hold up to $1$ gallon of water, another can hold up to $2$ gallons, and so on, with the largest able to hold up to $10$ gallons. The ten buckets are arranged in a line as shown below. Jack and Jill can pour some amount of water into each bucket, but no bucket can have less water than the one to its left. Is it possible that together, the ten buckets can hold 36 gallons of water?
[img]https://cdn.artofproblemsolving.com/attachments/f/8/0b6524bebe8fe859fe7b1bc887ac786106fc17.png[/img]
[b]p3.[/b] There are $2023$ knights and liars standing in a row. Knights always tell the truth and liars always lie. Each of them says, “the number of liars to the left of me is greater than the number of knights to the right.” How many liars are there?
[b]p4.[/b] Camila has a deck of $101$ cards numbered $1, 2, ..., 101$. She starts with $50$ random cards in her hand and the rest on a table with the numbers visible. In an exchange, she replaces all $50$ cards in her hand with her choice of $50$ of the $51$ cards from the table. Show that Camila can make at most 50 exchanges and end up with cards $1, 2, ..., 50$.
[img]https://cdn.artofproblemsolving.com/attachments/0/6/c89e65118764f3b593da45264bfd0d89e95067.png[/img]
[b]p5.[/b] There are $101$ pirates on a pirate ship: the captain and $100$ crew. Each pirate, including the captain, starts with $1$ gold coin. The captain makes proposals for redistributing the coins, and the crew vote on these proposals. The captain does not vote. For every proposal, each crew member greedily votes “yes” if he gains coins as a result of the proposal, “no” if he loses coins, and passes otherwise. If strictly more crew members vote “yes” than “no,” the proposal takes effect. The captain can make any number of proposals, one after the other. What is the largest number of coins the captain can accumulate?
[u]Round 2[/u]
[b]p6.[/b] The town of Lumenville has $100$ houses and is preparing for the math festival. The Tesla wiring company will lay lengths of power wire in straight lines between the houses so that power flows between any two houses, possibly by passing through other houses. The Edison lighting company will hang strings of lights in straight lines between pairs of houses so that each house is connected by a string to exactly one other. Show that however the houses are arranged, the Edison company can always hang their strings of lights so that the total length of the strings is no more than the total length of the power wires the Tesla company used.
[img]https://cdn.artofproblemsolving.com/attachments/9/2/763de9f4138b4dc552247e9316175036c649b6.png[/img]
[b]p7.[/b] You are given a sequence of $16$ digits. Is it always possible to select one or more digits in a row, so that multiplying them results in a square number?
[img]https://cdn.artofproblemsolving.com/attachments/d/1/f4fcda2e1e6d4a1f3a56cd1a04029dffcd3529.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Dutch IMO TST, 2
The incircle of a non-isosceles triangle $ABC$ has centre $I$ and is tangent to $BC$ and $CA$ in $D$ and $E$, respectively. Let $H$ be the orthocentre of $ABI$, let $K$ be the intersection of $AI$ and $BH$ and let $L$ be the intersection of $BI$ and $AH$. Show that the circumcircles of $DKH$ and $ELH$ intersect on the incircle of $ABC$.
2017 All-Russian Olympiad, 8
In a non-isosceles triangle $ABC$,$O$ and $I$ are circumcenter and incenter,respectively.$B^\prime$ is reflection of $B$ with respect to $OI$ and lies inside the angle $ABI$.Prove that the tangents to circumcirle of $\triangle BB^\prime I$ at $B^\prime$,$I$ intersect on $AC$. (A. Kuznetsov)
2010 Middle European Mathematical Olympiad, 3
We are given a cyclic quadrilateral $ABCD$ with a point $E$ on the diagonal $AC$ such that $AD=AE$ and $CB=CE$. Let $M$ be the center of the circumcircle $k$ of the triangle $BDE$. The circle $k$ intersects the line $AC$ in the points $E$ and $F$. Prove that the lines $FM$, $AD$ and $BC$ meet at one point.
[i](4th Middle European Mathematical Olympiad, Individual Competition, Problem 3)[/i]
2007 AMC 12/AHSME, 25
Points $ A$, $ B$, $ C$, $ D$, and $ E$ are located in 3-dimensional space with $ AB \equal{} BC \equal{} CD \equal{} DE \equal{} EA \equal{} 2$ and $ \angle ABC \equal{} \angle CDE \equal{} \angle DEA \equal{} 90^\circ.$ The plane of $ \triangle ABC$ is parallel to $ \overline{DE}$. What is the area of $ \triangle BDE$?
$ \textbf{(A)}\ \sqrt2 \qquad \textbf{(B)}\ \sqrt3 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \sqrt5 \qquad \textbf{(E)}\ \sqrt6$
2018 Brazil National Olympiad, 6
Consider $4n$ points in the plane, with no three points collinear. Using these points as vertices, we form $\binom{4n}{3}$ triangles. Show that there exists a point $X$ of the plane that belongs to the interior of at least $2n^3$ of these triangles.
2021 Tuymaada Olympiad, 2
The bisector of angle $B$ of a parallelogram $ABCD$ meets its diagonal $AC$ at $E$,
and the external bisector of angle $B$ meets line $AD$ at $F$. $M$ is the midpoint of $BE$.
Prove that $CM // EF$.
Champions Tournament Seniors - geometry, 2013.3
On the base of the $ABC$ of the triangular pyramid $SABC$ mark the point $M$ and through it were drawn lines parallel to the edges $SA, SB$ and $SC$, which intersect the side faces at the points $A1_, B_1$ and $C_1$, respectively. Prove that $\sqrt{MA_1}+ \sqrt{MB_1}+ \sqrt{MC_1}\le \sqrt{SA+SB+SC}$
2022 Harvard-MIT Mathematics Tournament, 1
Let $ABC$ be a triangle with $\angle A = 60^o$. Line $\ell$ intersects segments $AB$ and $AC$ and splits triangle $ABC$ into an equilateral triangle and a quadrilateral. Let $X$ and $Y$ be on $\ell$ such that lines $BX$ and $CY$ are perpendicular to ℓ. Given that $AB = 20$ and $AC = 22$, compute $XY$ .
2022 Sharygin Geometry Olympiad, 24
Let $OABCDEF$ be a hexagonal pyramid with base $ABCDEF$ circumscribed around a sphere $\omega$. The plane passing through the touching points of $\omega$ with faces $OFA$, $OAB$ and $ABCDEF$ meets $OA$ at point $A_1$, points $B_1$, $C_1$, $D_1$, $E_1$ and $F_1$ are defined similarly. Let $\ell$, $m$ and $n$ be the lines $A_1D_1$, $B_1E_1$ and $C_1F_1$ respectively. It is known that $\ell$ and $m$ are coplanar, also $m$ and $n$ are coplanar. Prove that $\ell$ and $n$ are coplanar.
2014 Turkey Team Selection Test, 2
A circle $\omega$ cuts the sides $BC,CA,AB$ of the triangle $ABC$ at $A_1$ and $A_2$; $B_1$ and $B_2$; $C_1$ and $C_2$, respectively. Let $P$ be the center of $\omega$. $A'$ is the circumcenter of the triangle $A_1A_2P$, $B'$ is the circumcenter of the triangle $B_1B_2P$, $C'$ is the circumcenter of the triangle $C_1C_2P$. Prove that $AA', BB'$ and $CC'$ concur.
1998 Irish Math Olympiad, 5
A triangle $ ABC$ has integer sides, $ \angle A\equal{}2 \angle B$ and $ \angle C>90^{\circ}$. Find the minimum possible perimeter of this triangle.
2025 Alborz Mathematical Olympiad, P1
Let \( M \) and \( N \) be the midpoints of sides \( BC \) and \( AC \), respectively, in an acute-angled triangle \( ABC \). Suppose there exists a point \( P \) on the line segment \( AM \) such that \( \angle NPC = \angle MPC \). Let \( D \) be the intersection point of the line \( NP \) and the line parallel to \( CP \) passing through \( B \). Prove that \( AD = AB \).
Proposed by Soroush Behroozifar
2015 CHMMC (Fall), 10
Let $P$ be the parabola in the plane determined by the equation $y = x^2$ . Suppose a circle $C$ in the plane intersects $P$ at four distinct points. If three of these points are $(-28, 784)$,$(-2, 4)$, and $(13, 169)$, find the sum of the distances from the focus of $P$ to all four of the intersection points
2015 Purple Comet Problems, 5
The diagram below shows a rectangle with one side divided into seven equal segments and the opposite
side divided in half. The rectangle has area 350. Find the area of the shaded region. For Diagram go to purplecomet.org/welcome/practice, the $2015$ middle school contest, and #5.
2004 France Team Selection Test, 2
Let $ABCD$ be a parallelogram. Let $M$ be a point on the side $AB$ and $N$ be a point on the side $BC$ such that the segments $AM$ and $CN$ have equal lengths and are non-zero. The lines $AN$ and $CM$ meet at $Q$.
Prove that the line $DQ$ is the bisector of the angle $\measuredangle ADC$.
[i]Alternative formulation.[/i] Let $ABCD$ be a parallelogram. Let $M$ and $N$ be points on the sides $AB$ and $BC$, respectively, such that $AM=CN\neq 0$. The lines $AN$ and $CM$ intersect at a point $Q$.
Prove that the point $Q$ lies on the bisector of the angle $\measuredangle ADC$.
1986 IMO Longlists, 11
Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.
Cono Sur Shortlist - geometry, 2003.G2
The circles $C_1, C_2$ and $C_3$ are externally tangent in pairs (each tangent to other two externally). Let $M$ the common point of $C_1$ and $C_2, N$ the common point of $C_2$ and $C_3$ and $P$ the common point of $C_3$ and $C_1$. Let $A$ be an arbitrary point of $C_1$. Line $AM$ cuts $C_2$ in $B$, line $BN$ cuts $C_3$ in $C$ and line $CP$ cuts $C_1$ in $D$. Prove that $AD$ is diameter of $C_1$.
2004 Manhattan Mathematical Olympiad, 4
We say that a circle is [i]half-inscribed[/i] in a triangle, if its center lies on one side of the triangle, and it is tangent to the other two sides. Show that a triangle that has two half-inscribed circles of equal radii, is isosceles. (Recall that a triangle is said to be [i]isosceles[/i], if it has two sides of equal length.)
2025 ISI Entrance UGB, 7
Consider a ball that moves inside an acute-angled triangle along a straight line, unit it hits the boundary, which is when it changes direction according to the mirror law, just like a ray of light (angle of incidence = angle of reflection). Prove that there exists a triangular periodic path for the ball, as pictured below.
[asy]
size(10cm);
pen thickbrown = rgb(0.6, 0.2, 0);
pen thickdark = rgb(0.2, 0, 0);
pen dashedarrow = linetype("6 6");
pair A = (-1.14, 4.36), B = (-4.46, -1.28), C = (3.32, -2.78);
pair D = (-1.479, -1.855), E = (0.727, 1.372), F = (-3.014, 1.176);
draw(A--B--C--cycle, thickbrown);
draw(A--B, thickdark);
draw(B--C, thickdark);
draw(C--A, thickdark);
draw(D--F, dashedarrow, EndArrow(6));
draw(F--E, dashedarrow, EndArrow(6));
draw(E--D, dashedarrow, EndArrow(6));
dot(A); label("$A$", A, N);
dot(B); label("$B$", B, dir(180));
dot(C); label("$C$", C, dir(330));
dot(D); label("$D$", D, S);
dot(E); label("$E$", E, NE);
dot(F); label("$F$", F, W);
[/asy]
2023 Austrian MO Beginners' Competition, 2
Let $ABCDEF$ be a regular hexagon with sidelength s. The points $P$ and $Q$ are on the diagonals $BD$ and $DF$, respectively, such that $BP = DQ = s$. Prove that the three points $C$, $P$ and $Q$ are on a line.
[i](Walther Janous)[/i]
2013 EGMO, 2
Determine all integers $m$ for which the $m \times m$ square can be dissected into five rectangles, the side lengths of which are the integers $1,2,3,\ldots,10$ in some order.
2008 China Girls Math Olympiad, 5
In convex quadrilateral $ ABCD$, $ AB \equal{} BC$ and $ AD \equal{} DC$. Point $ E$ lies on segment $ AB$ and point $ F$ lies on segment $ AD$ such that $ B$, $ E$, $ F$, $ D$ lie on a circle. Point $ P$ is such that triangles $ DPE$ and $ ADC$ are similar and the corresponding vertices are in the same orientation (clockwise or counterclockwise). Point $ Q$ is such that triangles $ BQF$ and $ ABC$ are similar and the corresponding vertices are in the same orientation. Prove that points $ A$, $ P$, $ Q$ are collinear.
1969 IMO Longlists, 51
$(NET 6)$ A curve determined by $y =\sqrt{x^2 - 10x+ 52}, 0\le x \le 100,$ is constructed in a rectangular grid. Determine the number of squares cut by the curve.