This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 JHMT HS, 7

Tags: geometry
Let $HOPKINS$ be an irregular convex heptagon (i.e., its angles and side lengths are all distinct, with the angles all having measure less than $180^{\circ}$) with area $1876$ such that all of its side lengths are greater than $5$, $OP=20$, and $KI=22$. Arcs with radius $2$ are drawn inside $HOPKINS$ with their centers at each of the vertices and their endpoints on the sides, creating circular sectors. Find the area of the region inside $HOPKINS$ but outside the sectors.

2010 CHMMC Fall, 3

Tags: geometry
In the diagram below, the three circles and the three line segments are tangent as shown. Given that the radius of all of the three circles is $1$, compute the area of the triangle. [img]https://cdn.artofproblemsolving.com/attachments/b/e/8af4ea38d9a4c675edd0957aaa5336caec0ae2.png[/img]

LMT Team Rounds 2010-20, B11

Tags: geometry
$\vartriangle ABC$ is an isosceles triangle with $AB = AC$. Let $M$ be the midpoint of $BC$ and $E$ be the point on AC such that $AE :CE = 5 : 3$. Let $X$ be the intersection of $BE$ and $AM$. Given that the area of $\vartriangle CM X$ is $15$, find the area of $\vartriangle ABC$.

2025 Belarusian National Olympiad, 11.3

Tags: geometry
An arbitrary triangle $ABC$ is given. Using ruler and compass construct three pairwise tangent circles $w_A$,$w_B$, $w_C$ with equal radii such that $A \in w_A, B \in w_B, C \in w_C$. [i]Matsvei Zorka[/i]

2023 Abelkonkurransen Finale, 4a

Assuming $a,b,c$ are the side-lengths of a triangle, show that \begin{align*} \frac{a^2+b^2-c^2}{ab} + \frac{b^2+c^2-a^2}{bc} + \frac{c^2+a^2-b^2}{ca} > 2. \end{align*} Also show that the inequality does not necessarily hold if you replace $2$ (on the right-hand side) by a bigger by a bigger number.

1996 Romania Team Selection Test, 5

Let $A$ and $B$ be points on a circle $\mathcal{C}$ with center $O$ such that $\angle AOB = \dfrac {\pi}2$. Circles $\mathcal{C}_1$ and $\mathcal{C}_2$ are internally tangent to $\mathcal{C}$ at $A$ and $B$ respectively and are also externally tangent to one another. The circle $\mathcal{C}_3$ lies in the interior of $\angle AOB$ and it is tangent externally to $\mathcal{C}_1$, $\mathcal{C}_2$ at $P$ and $R$ and internally tangent to $\mathcal{C}$ at $S$. Evaluate the value of $\angle PSR$.

2008 Oral Moscow Geometry Olympiad, 5

Reconstruct an acute-angled triangle given the orthocenter and midpoints of two sides. (A. Zaslavsky)

2014 Junior Balkan Team Selection Tests - Romania, 4

Tags: angle , ratio , geometry
Let $ABCD$ be a quadrilateral with $\angle A + \angle C = 60^o$. If $AB \cdot CD = BC \cdot AD$, prove that $AB \cdot CD = AC \cdot BD$. Leonard Giugiuc

1986 Vietnam National Olympiad, 2

Let $ R$, $ r$ be respectively the circumradius and inradius of a regular $ 1986$-gonal pyramid. Prove that \[ \frac{R}{r}\ge 1\plus{}\frac{1}{\cos\frac{\pi}{1986}}\] and find the total area of the surface of the pyramid when the equality occurs.

2007 Korea National Olympiad, 2

Tags: geometry
$ A_{1}B_{1}B_{2}A_{2}$ is a convex quadrilateral, and $ A_{1}B_{1}\neq A_{2}B_{2}$. Show that there exists a point $ M$ such that \[\frac{A_{1}B_{1}}{A_{2}B_{2}}\equal{}\frac{MA_{1}}{MA_{2}}\equal{}\frac{MB_{1}}{MB_{2}}\]

Kyiv City MO Seniors Round2 2010+ geometry, 2021.10.4

Inside the quadrilateral $ABCD$ marked a point $O$ such that $\angle OAD+ \angle OBC = \angle ODA + \angle OCB = 90^o$. Prove that the centers of the circumscribed circles around triangles $OAD$ and $OBC$ as well as the midpoints of the sides $AB$ and $CD$ lie on one circle. (Anton Trygub)

2017 NZMOC Camp Selection Problems, 6

Let $ABCD$ be a quadrilateral. The circumcircle of the triangle $ABC$ intersects the sides $CD$ and $DA$ in the points $P$ and $Q$ respectively, while the circumcircle of $CDA$ intersects the sides $AB$ and $BC$ in the points $R$ and $S$. The lines $BP$ and $BQ$ intersect the line $RS$ in the points $M$ and $N$ respectively. Prove that the points $M, N, P$ and $Q$ lie on the same circle.

2005 MOP Homework, 6

A $10 \times 10 \times 10$ cube is made up up from $500$ white unit cubes and $500$ black unit cubes, arranged in such a way that every two unit cubes that shares a face are in different colors. A line is a $1 \times 1 \times 10$ portion of the cube that is parallel to one of cube’s edges. From the initial cube have been removed $100$ unit cubes such that $300$ lines of the cube has exactly one missing cube. Determine if it is possible that the number of removed black unit cubes is divisible by $4$.

2019 Yasinsky Geometry Olympiad, p6

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$). (Mykola Moroz)

2007 Ukraine Team Selection Test, 2

$ ABCD$ is convex $ AD\parallel BC$, $ AC\perp BD$. $ M$ is interior point of $ ABCD$ which is not a intersection of diagonals $ AC$ and $ BD$ such that $ \angle AMB \equal{}\angle CMD \equal{}\frac{\pi}{2}$ .$ P$ is intersection of angel bisectors of $ \angle A$ and $ \angle C$. $ Q$ is intersection of angel bisectors of $ \angle B$ and $ \angle D$. Prove that $ \angle PMB \equal{}\angle QMC$.

Kvant 2023, M2761

Tags: length , geometry
Is it possible to fit a regular polygon into a circle of radius one so that among the lengths of its diagonals there are 2023 different values whose product is equal to one? [i]Proposed by A. Kuznetsov[/i]

2015 Mid-Michigan MO, 7-9

[b]p1.[/b] Thirty players participate in a chess tournament. Every player plays one game with every other player. What maximal number of players can get exactly $5$ points? (any game adds $1$ point to the winner’s score, $0$ points to a loser’s score, in the case of a draw each player obtains $1/2$ point.) [b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's? [b]p3.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square? [b]p4.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from 1 to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number 3? The total number of all obtained points is $264$. [b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1984 IMO Shortlist, 8

Given points $O$ and $A$ in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point $X$ in the plane, the circle $C(X)$ has center $O$ and radius $OX+{\angle AOX\over OX}$, where $\angle AOX$ is measured in radians in the range $[0,2\pi)$. Prove that we can find a point $X$, not on $OA$, such that its color appears on the circumference of the circle $C(X)$.

ABMC Team Rounds, 2017

[u]Round 1[/u] [b]1.1.[/b] A circle has a circumference of $20\pi$ inches. Find its area in terms of $\pi$. [b]1.2.[/b] Let $x, y$ be the solution to the system of equations: $x^2 + y^2 = 10 \,\,\, , \,\,\, x = 3y$. Find $x + y$ where both $x$ and $y$ are greater than zero. [b]1. 3.[/b] Chris deposits $\$ 100$ in a bank account. He then spends $30\%$ of the money in the account on biology books. The next week, he earns some money and the amount of money he has in his account increases by $30 \%$. What percent of his original money does he now have? [u]Round 2[/u] [b]2.1.[/b] The bell rings every $45$ minutes. If the bell rings right before the first class and right after the last class, how many hours are there in a school day with $9$ bells? [b]2.2.[/b] The middle school math team has $9$ members. They want to send $2$ teams to ABMC this year: one full team containing 6 members and one half team containing the other $3$ members. In how many ways can they choose a $6$ person team and a $3$ person team? [b]2.3.[/b] Find the sum: $$1 + (1 - 1)(1^2 + 1 + 1) + (2 - 1)(2^2 + 2 + 1) + (3 - 1)(3^2 + 3 + 1) + ...· + (8 - 1)(8^2 + 8 + 1) + (9 - 1)(9^2 + 9 + 1).$$ [u]Round 3[/u] [b]3.1.[/b] In square $ABHI$, another square $BIEF$ is constructed with diagonal $BI$ (of $ABHI$) as its side. What is the ratio of the area of $BIEF$ to the area of $ABHI$? [b]3.2.[/b] How many ordered pairs of positive integers $(a, b)$ are there such that $a$ and $b$ are both less than $5$, and the value of $ab + 1$ is prime? Recall that, for example, $(2, 3)$ and $(3, 2)$ are considered different ordered pairs. [b]3.3.[/b] Kate Lin drops her right circular ice cream cone with a height of $ 12$ inches and a radius of $5$ inches onto the ground. The cone lands on its side (along the slant height). Determine the distance between the highest point on the cone to the ground. [u]Round 4[/u] [b]4.1.[/b] In a Museum of Fine Mathematics, four sculptures of Euler, Euclid, Fermat, and Allen, one for each statue, are nailed to the ground in a circle. Bob would like to fully paint each statue a single color such that no two adjacent statues are blue. If Bob only has only red and blue paint, in how many ways can he paint the four statues? [b]4.2.[/b] Geo has two circles, one of radius 3 inches and the other of radius $18$ inches, whose centers are $25$ inches apart. Let $A$ be a point on the circle of radius 3 inches, and B be a point on the circle of radius $18$ inches. If segment $\overline{AB}$ is a tangent to both circles that does not intersect the line connecting their centers, find the length of $\overline{AB}$. [b]4.3.[/b] Find the units digit to $2017^{2017!}$. [u]Round 5[/u] [b]5.1.[/b] Given equilateral triangle $\gamma_1$ with vertices $A, B, C$, construct square $ABDE$ such that it does not overlap with $\gamma_1$ (meaning one cannot find a point in common within both of the figures). Similarly, construct square $ACFG$ that does not overlap with $\gamma_1$ and square $CBHI$ that does not overlap with $\gamma_1$. Lines $DE$, $FG$, and $HI$ form an equilateral triangle $\gamma_2$. Find the ratio of the area of $\gamma_2$ to $\gamma_1$ as a fraction. [b]5.2.[/b] A decimal that terminates, like $1/2 = 0.5$ has a repeating block of $0$. A number like $1/3 = 0.\overline{3}$ has a repeating block of length $ 1$ since the fraction bar is only over $ 1$ digit. Similarly, the numbers $0.0\overline{3}$ and $0.6\overline{5}$ have repeating blocks of length $ 1$. Find the number of positive integers $n$ less than $100$ such that $1/n$ has a repeating block of length $ 1$. [b]5.3.[/b] For how many positive integers $n$ between $1$ and $2017$ is the fraction $\frac{n + 6}{2n + 6}$ irreducible? (Irreducibility implies that the greatest common factor of the numerator and the denominator is $1$.) [u]Round 6[/u] [b]6.1.[/b] Consider the binary representations of $2017$, $2017 \cdot 2$, $2017 \cdot 2^2$, $2017 \cdot 2^3$, $... $, $2017 \cdot 2^{100}$. If we take a random digit from any of these binary representations, what is the probability that this digit is a $1$ ? [b]6.2.[/b] Aaron is throwing balls at Carlson’s face. These balls are infinitely small and hit Carlson’s face at only $1$ point. Carlson has a flat, circular face with a radius of $5$ inches. Carlson’s mouth is a circle of radius $ 1$ inch and is concentric with his face. The probability of a ball hitting any point on Carlson’s face is directly proportional to its distance from the center of Carlson’s face (so when you are $2$ times farther away from the center, the probability of hitting that point is $2$ times as large). If Aaron throws one ball, and it is guaranteed to hit Carlson’s face, what is the probability that it lands in Carlson’s mouth? [b]6.3.[/b] The birth years of Atharva, his father, and his paternal grandfather form a geometric sequence. The birth years of Atharva’s sister, their mother, and their grandfather (the same grandfather) form an arithmetic sequence. If Atharva’s sister is $5$ years younger than Atharva and all $5$ people were born less than $200$ years ago (from $2017$), what is Atharva’s mother’s birth year? [u]Round 7[/u] [b]7. 1.[/b] A function $f$ is called an “involution” if $f(f(x)) = x$ for all $x$ in the domain of $f$ and the inverse of $f$ exists. Find the total number of involutions $f$ with domain of integers between $ 1$ and $ 8$ inclusive. [b]7.2.[/b] The function $f(x) = x^3$ is an odd function since each point on $f(x)$ corresponds (through a reflection through the origin) to a point on $f(x)$. For example the point $(-2, -8)$ corresponds to $(2, 8)$. The function $g(x) = x^3 - 3x^2 + 6x - 10$ is a “semi-odd” function, since there is a point $(a, b)$ on the function such that each point on $g(x)$ corresponds to a point on $g(x)$ via a reflection over $(a, b)$. Find $(a, b)$. [b]7.3.[/b] A permutations of the numbers $1, 2, 3, 4, 5$ is an arrangement of the numbers. For example, $12345$ is one arrangement, and $32541$ is another arrangement. Another way to look at permutations is to see each permutation as a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$. For example, the permutation $23154$ corresponds to the function f with $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, $f(5) = 4$, and $f(4) = 5$, where $f(x)$ is the $x$-th number of the permutation. But the permutation $23154$ has a cycle of length three since $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, and cycles after $3$ applications of $f$ when regarding a set of $3$ distinct numbers in the domain and range. Similarly the permutation $32541$ has a cycle of length three since $f(5) = 1$, $f(1) = 3$, and $f(3) = 5$. In a permutation of the natural numbers between $ 1$ and $2017$ inclusive, find the expected number of cycles of length $3$. [u]Round 8[/u] [b]8.[/b] Find the number of characters in the problems on the accuracy round test. This does not include spaces and problem numbers (or the periods after problem numbers). For example, “$1$. What’s $5 + 10$?” would contain $11$ characters, namely “$W$,” “$h$,” “$a$,” “$t$,” “$’$,” “$s$,” “$5$,” “$+$,” “$1$,” “$0$,” “?”. If the correct answer is $c$ and your answer is $x$, then your score will be $$\max \left\{ 0, 13 -\left\lceil \frac{|x-c|}{100} \right\rceil \right\}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 AIME Problems, 9

Let $ABC$ be a triangle with sides 3, 4, and 5, and $DEFG$ be a 6-by-7 rectangle. A segment is drawn to divide triangle $ABC$ into a triangle $U_1$ and a trapezoid $V_1$ and another segment is drawn to divide rectangle $DEFG$ into a triangle $U_2$ and a trapezoid $V_2$ such that $U_1$ is similar to $U_2$ and $V_1$ is similar to $V_2$. The minimum value of the area of $U_1$ can be written in the form $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

1993 Bundeswettbewerb Mathematik, 3

In the triangle $ABC$, let $A'$ be the intersection of the perpendicular bisector of $AB$ and the angle bisector of $\angle BAC$ and define $B', C'$ analogously. Prove that a) The triangle $ABC$ is equilateral if and only if $A' =B'.$ b) If $A', B'$ and $C'$ are distinct, we have $\angle B' A' C' = 90^{\circ} - \frac{1}{2} \angle BAC.$

2005 National High School Mathematics League, 3

$\triangle ABC$ is inscribed to unit circle. Bisector of $\angle A,\angle B,\angle C$ intersect the circle at $A_1,B_1,C_1$ respectively. The value of $\frac{\displaystyle AA_1\cdot\cos\frac{A}{2}+BB_1\cdot\cos\frac{B}{2}+CC_1\cdot\cos\frac{C}{2}}{\sin A+\sin B+\sin C}$ is $\text{(A)}2\qquad\text{(B)}4\qquad\text{(C)}6\qquad\text{(D)}8$

2002 National Olympiad First Round, 21

Let $A_1A_2 \cdots A_{10}$ be a regular decagon such that $[A_1A_4]=b$ and the length of the circumradius is $R$. What is the length of a side of the decagon? $ \textbf{a)}\ b-R \qquad\textbf{b)}\ b^2-R^2 \qquad\textbf{c)}\ R+\dfrac b2 \qquad\textbf{d)}\ b-2R \qquad\textbf{e)}\ 2b-3R $

2006 Victor Vâlcovici, 2

Let $ ABC $ be a triangle with $ AB=AC $ and chose such that $ \angle BAC <120^{\circ } . $ On the altitude of $ ABC $ from $ A, $ consider the point $ O $ so that $ \angle BOC =120^{\circ } , $ and an arbitrary point $ M\neq O $ in the interior of $ ABC. $ Show that $ MA+MB+MC>OA+OB+OC. $ [i]Gheorghe Bucur[/i]

2009 Croatia Team Selection Test, 3

Tags: geometry
On sides $ AB$ and $ AC$ of triangle $ ABC$ there are given points $ D,E$ such that $ DE$ is tangent of circle inscribed in triangle $ ABC$ and $ DE \parallel BC$. Prove $ AB\plus{}BC\plus{}CA\geq 8DE$