This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 MOAA, Accuracy

[b]p1.[/b] Find the last digit of $2022^{2022}$. [b]p2.[/b] Let $a_1 < a_2 <... < a_8$ be eight real numbers in an increasing arithmetic progression. If $a_1 + a_3 + a_5 + a_7 = 39$ and $a_2 + a_4 + a_6 + a_8 = 40$, determine the value of $a_1$. [b]p3.[/b] Patrick tries to evaluate the sum of the first $2022$ positive integers, but accidentally omits one of the numbers, $N$, while adding all of them manually, and incorrectly arrives at a multiple of $1000$. If adds correctly otherwise, find the sum of all possible values of $N$. [b]p4.[/b] A machine picks a real number uniformly at random from $[0, 2022]$. Andrew randomly chooses a real number from $[2020, 2022]$. The probability that Andrew’s number is less than the machine’s number is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p5.[/b] Let $ABCD$ be a square and $P$ be a point inside it such that the distances from $P$ to sides $AB$ and $AD$ respectively are $2$ and $4$, while $PC = 6$. If the side length of the square can be expressed in the form $a +\sqrt{b}$ for positive integers $a, b$, then determine $a + b$. [b]p6.[/b] Positive integers $a_1, a_2, ..., a_{20}$ sum to $57$. Given that $M$ is the minimum possible value of the quantity $a_1!a_2!...a_{20}!$, find the number of positive integer divisors of $M$. [b]p7.[/b] Jessica has $16$ balls in a box, where $15$ of them are red and one is blue. Jessica draws balls out the box three at a time until one of the three is blue. If she ever draws three red marbles, she discards one of them and shuffles the remaining two back into the box. The expected number of draws it takes for Jessica to draw the blue ball can be written as a common fraction $\frac{m}{n}$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]p8.[/b] The Lucas sequence is defined by these conditions: $L_0 = 2$, $L_1 = 1$, and $L_{n+2} =L_{n+1} +L_n$ for all $n \ge 0$. Determine the remainder when $L^2_{2019} +L^2_{2020}$ is divided by $L_{2023}$. [b]p9.[/b] Let $ABCD$ be a parallelogram. Point $P$ is selected in its interior such that the distance from $P$ to $BC$ is exactly $6$ times the distance from $P$ to $AD$, and $\angle APB = \angle CPD = 90^o$. Given that $AP = 2$ and $CP = 9$, the area of $ABCD$ can be expressed as $m\sqrt{n}$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m + n$. [b]p10.[/b] Consider the polynomial $P(x) = x^{35} + ... + x + 1$. How many pairs $(i, j)$ of integers are there with $0 \le i < j \le 35$ such that if we flip the signs of the $x^i$ and $x^j$ terms in $P(x)$ to form a new polynomial $Q(x)$, then there exists a nonconstant polynomial $R(x)$ with integer coefficients dividing both $P(x)$ and $Q(x)$? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 IMAR Test, 3

Tags: circles , geometry
The closure (interior and boundary) of a convex quadrangle is covered by four closed discs centered at each vertex of the quadrangle each. Show that three of these discs cover the closure of the triangle determined by their centers.

1971 IMO Longlists, 17

We are given two mutually tangent circles in the plane, with radii $r_1, r_2$. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of $r_1$ and $r_2$ and the condition for the solvability of the problem.

1983 AIME Problems, 15

The adjoining figure shows two intersecting chords in a circle, with $B$ on minor arc $AD$. Suppose that the radius of the circle is 5, that $BC = 6$, and that $AD$ is bisected by $BC$. Suppose further that $AD$ is the only chord starting at $A$ which is bisected by $BC$. It follows that the sine of the minor arc $AB$ is a rational number. If this fraction is expressed as a fraction $m/n$ in lowest terms, what is the product $mn$? [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair A=dir(200), D=dir(95), M=midpoint(A--D), C=dir(30), BB=C+2*dir(C--M), B=intersectionpoint(M--BB, Circle(origin, 1)); draw(Circle(origin, 1)^^A--D^^B--C); real r=0.05; pair M1=midpoint(M--D), M2=midpoint(M--A); draw((M1+0.1*dir(90)*dir(A--D))--(M1+0.1*dir(-90)*dir(A--D))); draw((M2+0.1*dir(90)*dir(A--D))--(M2+0.1*dir(-90)*dir(A--D))); pair point=origin; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D));[/asy]

1978 Romania Team Selection Test, 3

Let $ P[X,Y] $ be a polynomial of degree at most $ 2 .$ If $ A,B,C,A',B',C' $ are distinct roots of $ P $ such that $ A,B,C $ are not collinear and $ A',B',C' $ lie on the lines $ BC,CA, $ respectively, $ AB, $ in the planar representation of these points, show that $ P=0. $

1992 IMO Shortlist, 3

The diagonals of a quadrilateral $ ABCD$ are perpendicular: $ AC \perp BD.$ Four squares, $ ABEF,BCGH,CDIJ,DAKL,$ are erected externally on its sides. The intersection points of the pairs of straight lines $ CL, DF, AH, BJ$ are denoted by $ P_1,Q_1,R_1, S_1,$ respectively (left figure), and the intersection points of the pairs of straight lines $ AI, BK, CE DG$ are denoted by $ P_2,Q_2,R_2, S_2,$ respectively (right figure). Prove that $ P_1Q_1R_1S_1 \cong P_2Q_2R_2S_2$ where $ P_1,Q_1,R_1, S_1$ and $ P_2,Q_2,R_2, S_2$ are the two quadrilaterals. [i]Alternative formulation:[/i] Outside a convex quadrilateral $ ABCD$ with perpendicular diagonals, four squares $ AEFB, BGHC, CIJD, DKLA,$ are constructed (vertices are given in counterclockwise order). Prove that the quadrilaterals $ Q_1$ and $ Q_2$ formed by the lines $ AG, BI, CK, DE$ and $ AJ, BL, CF, DH,$ respectively, are congruent.

2017 Estonia Team Selection Test, 10

Let $ABC$ be a triangle with $AB = \frac{AC}{2 }+ BC$. Consider the two semicircles outside the triangle with diameters $AB$ and $BC$. Let $X$ be the orthogonal projection of $A$ onto the common tangent line of those semicircles. Find $\angle CAX$.

Novosibirsk Oral Geo Oly IX, 2022.7

Altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ intersect at point $H$. A straight line passing through point $H$ parallel to line $A_1C_1$ intersects the circumscribed circles of triangles $AHC_1$ and $CHA_1$ at points $X$ and $Y$, respectively. Prove that points $X$ and $Y$ are equidistant from the midpoint of segment $BH$.

2021 Romanian Master of Mathematics Shortlist, G1

Let $ABCD$ be a parallelogram. A line through $C$ crosses the side $AB$ at an interior point $X$, and the line $AD$ at $Y$. The tangents of the circle $AXY$ at $X$ and $Y$, respectively, cross at $T$. Prove that the circumcircles of triangles $ABD$ and $TXY$ intersect at two points, one lying on the line $AT$ and the other one lying on the line $CT$.

2021-IMOC qualification, G2

Given a triangle $ABC$, $D$ is the reflection from the perpendicular foot from $A$ to $BC$ through the midpoint of $BC$. $E$ is the reflection from the perpendicular foot from $B$ to $CA$ through the midpoint of $CA$. $F$ is the reflection from the perpendicular foot from $C$ to $AB$ through the midpoint of $AB$. Prove: $DE \perp AC$ if and only if $DF \perp AB$

2023 Stanford Mathematics Tournament, 3

Tags: geometry
Consider an equilateral triangle $\vartriangle ABC$ of side length $4$. In the zeroth iteration, draw a circle $\Omega_0$ tangent to all three sides of the triangle. In the first iteration, draw circles $\Omega_{1A}$,$ \Omega_{1B}$, $\Omega_{1C}$ such that circle $\Omega_{1v}$ is externally tangent to $\Omega_0$ and tangent to the two sides that meet at vertex $v$ (for example, $\Omega_{1A}$ would be tangent to $\Omega_0$ and sides $AB$, $AC$). In the nth iteration, draw circle $\Omega_{n,v}$ externally tangent to $\Omega_{n-1,v}$ and the two sides that meet at vertex $v$. Compute the total area of all the drawn circles as the number of iterations approaches infinity.

2019 Philippine TST, 3

Given $\triangle ABC$ with $AB < AC$, let $\omega$ be the circle centered at the midpoint $M$ of $BC$ with diameter $AC - AB$. The internal bisector of $\angle BAC$ intersects $\omega$ at distinct points $X$ and $Y$. Let $T$ be the point on the plane such that $TX$ and $TY$ are tangent to $\omega$. Prove that $AT$ is perpendicular to $BC$.

2004 Germany Team Selection Test, 2

Let two chords $AC$ and $BD$ of a circle $k$ meet at the point $K$, and let $O$ be the center of $k$. Let $M$ and $N$ be the circumcenters of triangles $AKB$ and $CKD$. Show that the quadrilateral $OMKN$ is a parallelogram.

1976 Kurschak Competition, 1

$ABCD$ is a parallelogram. $P$ is a point outside the parallelogram such that angles $\angle PAB$ and $\angle PCB$ have the same value but opposite orientation. Show that $\angle APB = \angle DPC$.

2006 Belarusian National Olympiad, 7

Let $AH_A, BH_B, CH_C$ be altitudes and $BM$ be a median of the acute-angled triangle $ABC$ ($AB > BC$). Let $K$ be a point of intersection of $BM$ and $AH_A$, $T$ be a point on $BC$ such that $KT \parallel AC$, $H$ be the orthocenter of $ABC$. Prove that the lines passing through the pairs of the points $(H_c, H_A), (H, T)$ and $(A, C)$ are concurrent. (S. Arkhipov)

2016 Saudi Arabia IMO TST, 1

Let $ABC$ be a triangle inscribed in the circle $(O)$. The bisector of $\angle BAC$ cuts the circle $(O)$ again at $D$. Let $DE$ be the diameter of $(O)$. Let $G$ be a point on arc $AB$ which does not contain $C$. The lines $GD$ and $BC$ intersect at $F$. Let $H$ be a point on the line $AG$ such that $FH \parallel AE$. Prove that the circumcircle of triangle $HAB$ passes through the orthocenter of triangle $HAC$.

2007 IMO Shortlist, 2

Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. [i]Author: Farzan Barekat, Canada[/i]

2013 USAMTS Problems, 3

Let $A_1A_2A_3\dots A_{20}$ be a $20$-sided polygon $P$ in the plane, where all of the side lengths of $P$ are equal, the interior angle at $A_i$ measures $108$ degrees for all odd $i$, and the interior angle $A_i$ measures $216$ degrees for all even $i$. Prove that the lines $A_2A_8$, $A_4A_{10}$, $A_5A_{13}$, $A_6A_{16}$, and $A_7A_{19}$ all intersect at the same point. [asy] import graph; size(10cm); pair temp= (-1,0); pair A01 = (0,0); pair A02 = rotate(306,A01)*temp; pair A03 = rotate(144,A02)*A01; pair A04 = rotate(252,A03)*A02; pair A05 = rotate(144,A04)*A03; pair A06 = rotate(252,A05)*A04; pair A07 = rotate(144,A06)*A05; pair A08 = rotate(252,A07)*A06; pair A09 = rotate(144,A08)*A07; pair A10 = rotate(252,A09)*A08; pair A11 = rotate(144,A10)*A09; pair A12 = rotate(252,A11)*A10; pair A13 = rotate(144,A12)*A11; pair A14 = rotate(252,A13)*A12; pair A15 = rotate(144,A14)*A13; pair A16 = rotate(252,A15)*A14; pair A17 = rotate(144,A16)*A15; pair A18 = rotate(252,A17)*A16; pair A19 = rotate(144,A18)*A17; pair A20 = rotate(252,A19)*A18; dot(A01); dot(A02); dot(A03); dot(A04); dot(A05); dot(A06); dot(A07); dot(A08); dot(A09); dot(A10); dot(A11); dot(A12); dot(A13); dot(A14); dot(A15); dot(A16); dot(A17); dot(A18); dot(A19); dot(A20); draw(A01--A02--A03--A04--A05--A06--A07--A08--A09--A10--A11--A12--A13--A14--A15--A16--A17--A18--A19--A20--cycle); label("$A_{1}$",A01,E); label("$A_{2}$",A02,W); label("$A_{3}$",A03,NE); label("$A_{4}$",A04,SW); label("$A_{5}$",A05,N); label("$A_{6}$",A06,S); label("$A_{7}$",A07,N); label("$A_{8}$",A08,SE); label("$A_{9}$",A09,NW); label("$A_{10}$",A10,E); label("$A_{11}$",A11,W); label("$A_{12}$",A12,E); label("$A_{13}$",A13,SW); label("$A_{14}$",A14,NE); label("$A_{15}$",A15,S); label("$A_{16}$",A16,N); label("$A_{17}$",A17,S); label("$A_{18}$",A18,NW); label("$A_{19}$",A19,SE); label("$A_{20}$",A20,W);[/asy]

DMM Individual Rounds, 2013 (-14)

[b]p1.[/b] $p, q, r$ are prime numbers such that $p^q + 1 = r$. Find $p + q + r$. [b]p2.[/b] $2014$ apples are distributed among a number of children such that each child gets a different number of apples. Every child gets at least one apple. What is the maximum possible number of children who receive apples? [b]p3.[/b] Cathy has a jar containing jelly beans. At the beginning of each minute he takes jelly beans out of the jar. At the $n$-th minute, if $n$ is odd, he takes out $5$ jellies. If n is even he takes out $n$ jellies. After the $46$th minute there are only $4$ jellies in the jar. How many jellies were in the jar in the beginning? [b]p4.[/b] David is traveling to Budapest from Paris without a cellphone and he needs to use a public payphone. He only has two coins with him. There are three pay-phones - one that never works, one that works half of the time, and one that always works. The first phone that David tries does not work. Assuming that he does not use the same phone again, what is the probability that the second phone that he uses will work? [b]p5.[/b] Let $a, b, c, d$ be positive real numbers such that $$a^2 + b^2 = 1$$ $$c^2 + d^2 = 1;$$ $$ad - bc =\frac17$$ Find $ac + bd$. [b]p6.[/b] Three circles $C_A,C_B,C_C$ of radius $1$ are centered at points $A,B,C$ such that $A$ lies on $C_B$ and $C_C$, $B$ lies on $C_C$ and $C_A$, and $C$ lies on $C_A$ and $C_B$. Find the area of the region where $C_A$, $C_B$, and $C_C$ all overlap. [b]p7.[/b] Two distinct numbers $a$ and $b$ are randomly and uniformly chosen from the set $\{3, 8, 16, 18, 24\}$. What is the probability that there exist integers $c$ and $d$ such that $ac + bd = 6$? [b]p8.[/b] Let $S$ be the set of integers $1 \le N \le 2^{20}$ such that $N = 2^i + 2^j$ where $i, j$ are distinct integers. What is the probability that a randomly chosen element of $S$ will be divisible by $9$? [b]p9.[/b] Given a two-pan balance, what is the minimum number of weights you must have to weigh any object that weighs an integer number of kilograms not exceeding $100$ kilograms? [b]p10.[/b] Alex, Michael and Will write $2$-digit perfect squares $A,M,W$ on the board. They notice that the $6$-digit number $10000A + 100M +W$ is also a perfect square. Given that $A < W$, find the square root of the $6$-digit number. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Swiss NMO - geometry, 2015.8

Let $ABCD$ be a trapezoid, where $AB$ and $CD$ are parallel. Let $P$ be a point on the side $BC$. Show that the parallels to $AP$ and $PD$ intersect through $C$ and $B$ to $DA$, respectively.

1996 Singapore Team Selection Test, 1

Let $C, B, E$ be three points on a straight line $\ell$ in that order. Suppose that $A$ and $D$ are two points on the same side of $\ell$ such that (i) $\angle ACE = \angle CDE = 90^o$ and (ii) $CA = CB = CD$. Let $F$ be the point of intersection of the segment $AB$ and the circumcircle of $\vartriangle ADC$. Prove that $F$ is the incentre of $\vartriangle CDE$.

2006 Purple Comet Problems, 15

A concrete sewer pipe fitting is shaped like a cylinder with diameter $48$ with a cone on top. A cylindrical hole of diameter $30$ is bored all the way through the center of the fitting as shown. The cylindrical portion has height $60$ while the conical top portion has height $20$. Find $N$ such that the volume of the concrete is $N \pi$. [asy] import three; size(250); defaultpen(linewidth(0.7)+fontsize(10)); pen dashes = linewidth(0.7) + linetype("2 2"); currentprojection = orthographic(0,-15,5); draw(circle((0,0,0), 15),dashes); draw(circle((0,0,80), 15)); draw(scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0))); draw(shift((0,0,60))*scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0))); draw((-24,0,0)--(-24,0,60)--(-15,0,80)); draw((24,0,0)--(24,0,60)--(15,0,80)); draw((-15,0,0)--(-15,0,80),dashes); draw((15,0,0)--(15,0,80),dashes); draw("48", (-24,0,-20)--(24,0,-20)); draw((-15,0,-20)--(-15,0,-17)); draw((15,0,-20)--(15,0,-17)); label("30", (0,0,-15)); draw("60", (50,0,0)--(50,0,60)); draw("20", (50,0,60)--(50,0,80)); draw((50,0,60)--(47,0,60));[/asy]

2024 Iranian Geometry Olympiad, 1

Tags: geometry
An equilateral triangle $\bigtriangleup ABC$ is split into $4$ triangles with equal area; three congruent triangles $\bigtriangleup ABX,\bigtriangleup BCY, \bigtriangleup CAZ$, and a smaller equilateral triangle $\bigtriangleup XYZ$, as shown. Prove that the points $X, Y, Z$ lie on the incircle of triangle $\bigtriangleup ABC$. [i]Proposed by Josef Tkadlec - Czech Republic[/i]

1993 Baltic Way, 19

A convex quadrangle $ ABCD$ is inscribed in a circle with center $ O$. The angles $ AOB, BOC, COD$ and $ DOA$, taken in some order, are of the same size as the angles of the quadrangle $ ABCD$. Prove that $ ABCD$ is a square

OMMC POTM, 2024 11

Rectangle $ABCD$ with $AB>BC$ has point $P$ inside of it and $Q$ outside of it, such that $PQCD$ is a parallelogram with $PD=AD$. Let $M$ be the midpoint of $CD$. Give that $\angle AMP=\angle BMQ$, prove that $AB=2BC$.