Found problems: 25757
1992 AIME Problems, 9
Trapezoid $ABCD$ has sides $AB=92$, $BC=50$, $CD=19$, and $AD=70$, with $AB$ parallel to $CD$. A circle with center $P$ on $AB$ is drawn tangent to $BC$ and $AD$. Given that $AP=\frac mn$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.
2016 Dutch Mathematical Olympiad, 4 seniors
In the acute triangle $ABC$, the midpoint of side $BC$ is called $M$. Point $X$ lies on the angle bisector of $\angle AMB$ such that $\angle BXM = 90^o$. Point $Y$ lies on the angle bisector of $\angle AMC$ such that $\angle CYM = 90^o$. Line segments $AM$ and $XY$ intersect in point $Z$. Prove that $Z$ is the midpoint of $XY$ .
[asy]
import geometry;
unitsize (1.2 cm);
pair A, B, C, M, X, Y, Z;
A = (0,0);
B = (4,1.5);
C = (0.5,3);
M = (B + C)/2;
X = extension(M, incenter(A,B,M), B, B + rotate(90)*(incenter(A,B,M) - M));
Y = extension(M, incenter(A,C,M), C, C + rotate(90)*(incenter(A,C,M) - M));
Z = extension(A,M,X,Y);
draw(A--B--C--cycle);
draw(A--M);
draw(M--interp(M,X,2));
draw(M--interp(M,Y,2));
draw(B--X, dotted);
draw(C--Y, dotted);
draw(X--Y);
dot("$A$", A, SW);
dot("$B$", B, E);
dot("$C$", C, N);
dot("$M$", M, NE);
dot("$X$", X, NW);
dot("$Y$", Y, NE);
dot("$Z$", Z, S);
[/asy]
2017 LMT, Team Round
[b]p1.[/b] Suppose that $20\%$ of a number is $17$. Find $20\%$ of $17\%$ of the number.
[b]p2.[/b] Let $A, B, C, D$ represent the numbers $1$ through $4$ in some order, with $A \ne 1$. Find the maximum possible value of $\frac{\log_A B}{C +D}$.
Here, $\log_A B$ is the unique real number $X$ such that $A^X = B$.
[b]p3. [/b]There are six points in a plane, no four of which are collinear. A line is formed connecting every pair of points. Find the smallest possible number of distinct lines formed.
[b]p4.[/b] Let $a,b,c$ be real numbers which satisfy $$\frac{2017}{a}= a(b +c),
\frac{2017}{b}= b(a +c),
\frac{2017}{c}= c(a +b).$$ Find the sum of all possible values of $abc$.
[b]p5.[/b] Let $a$ and $b$ be complex numbers such that $ab + a +b = (a +b +1)(a +b +3)$. Find all possible values of $\frac{a+1}{b+1}$.
[b]p6.[/b] Let $\vartriangle ABC$ be a triangle. Let $X,Y,Z$ be points on lines $BC$, $CA$, and $AB$, respectively, such that $X$ lies on segment $BC$, $B$ lies on segment $AY$ , and $C$ lies on segment $AZ$. Suppose that the circumcircle of $\vartriangle XYZ$ is tangent to lines $AB$, $BC$, and $CA$ with center $I_A$. If $AB = 20$ and $I_AC = AC = 17$ then compute the length of segment $BC$.
[b]p7. [/b]An ant makes $4034$ moves on a coordinate plane, beginning at the point $(0, 0)$ and ending at $(2017, 2017)$. Each move consists of moving one unit in a direction parallel to one of the axes. Suppose that the ant stays within the region $|x - y| \le 2$. Let N be the number of paths the ant can take. Find the remainder when $N$ is divided by $1000$.
[b]p8.[/b] A $10$ digit positive integer $\overline{a_9a_8a_7...a_1a_0}$ with $a_9$ nonzero is called [i]deceptive [/i] if there exist distinct indices $i > j$ such that $\overline{a_i a_j} = 37$. Find the number of deceptive positive integers.
[b]p9.[/b] A circle passing through the points $(2, 0)$ and $(1, 7)$ is tangent to the $y$-axis at $(0, r )$. Find all possible values of $ r$.
[b]p10.[/b] An ellipse with major and minor axes $20$ and $17$, respectively, is inscribed in a square whose diagonals coincide with the axes of the ellipse. Find the area of the square.
PS. You had better use hide for answers.
2014 Taiwan TST Round 3, 1
In convex hexagon $ABCDEF$, $AB \parallel DE$, $BC \parallel EF$, $CD \parallel FA$, and \[ AB+DE = BC+EF = CD+FA. \] The midpoints of sides $AB$, $BC$, $DE$, $EF$ are $A_1$, $B_1$, $D_1$, $E_1$, and segments $A_1D_1$ and $B_1E_1$ meet at $O$. Prove that $\angle D_1OE_1 = \frac12 \angle DEF$.
2007 Sharygin Geometry Olympiad, 21
There are two pipes on the plane (the pipes are circular cylinders of equal size, $4$ m around). Two of them are parallel and, being tangent one to another in the common generatrix, form a tunnel over the plane. The third pipe is perpendicular to two others and cuts out a chamber in the tunnel. Determine the area of the surface of this chamber.
India EGMO 2025 TST, 8
Let $ABCD$ be a trapezium with $AD||BC$; and let $X$ and $Y$ be the midpoints of $AC$ and $BD$ respectively. Prove that if $\angle DAY=\angle CAB$ then the internal bisectors of $\angle XAY$ and $\angle XBY$ meet on $XY$.
Proposed by Belur Jana Venkatachala
Kyiv City MO Juniors 2003+ geometry, 2012.8.3
On the circle $\gamma$ the points $A$ and $B$ are selected. The circle $\omega$ touches the segment $AB$ at the point $K$ and intersects the circle $\gamma$ at the points $M$ and $N$. The points lie on the circle $\gamma$ in the following order: $A, \, \, M, \, \, N, \, \, B$. Prove that $\angle AMK = \angle KNB$.
(Yuri Biletsky)
Novosibirsk Oral Geo Oly IX, 2020.7
The quadrilateral $ABCD$ is known to be inscribed in a circle, and that there is a circle with center on side $AD$ tangent to the other three sides. Prove that $AD = AB + CD$.
ABMC Team Rounds, 2021
[u]Round 5[/u]
[b]5.1.[/b] Julia baked a pie for herself to celebrate pi day this year. If Julia bakes anyone pie on pi day, the following year on pi day she bakes a pie for herself with $1/3$ probability, she bakes her friend a pie with $1/6$ probability, and she doesn't bake anyone a pie with $1/2$ probability. However, if Julia doesn't make pie on pi day, the following year on pi day she bakes a pie for herself with $1/2$ probability, she bakes her friend a pie with $1/3$ probability, and she doesn't bake anyone a pie with $1/6$ probability. The probability that Julia bakes at least $2$ pies on pi day in the next $5$ years can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$.
[b]5.2.[/b] Steven is flipping a coin but doesn't want to appear too lucky. If he ips the coin $8$ times, the probability he only gets sequences of consecutive heads or consecutive tails that are of length $4$ or less can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$.
[b]5.3.[/b] Let $ABCD$ be a square with side length $3$. Further, let $E$ be a point on side$ AD$, such that $AE = 2$ and $DE = 1$, and let $F$ be the point on side $AB$ such that triangle $CEF$ is right with hypotenuse $CF$. The value $CF^2$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[u]Round 6[/u]
[b]6.1.[/b] Let $P$ be a point outside circle $\omega$ with center $O$. Let $A,B$ be points on circle $\omega$ such that $PB$ is a tangent to $\omega$ and $PA = AB$. Let $M$ be the midpoint of $AB$. Given $OM = 1$, $PB = 3$, the value of $AB^2$ can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]6.2.[/b] Let $a_0, a_1, a_2,...$with each term defined as $a_n = 3a_{n-1} + 5a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Find the remainder when $a_{2020}$ is divided by $360$.
[b]6.3.[/b] James and Charles each randomly pick two points on distinct sides of a square, and they each connect their chosen pair of points with a line segment. The probability that the two line segments intersect can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[u]Round 7[/u]
[b]7.1.[/b] For some positive integers $x, y$ let $g = gcd (x, y)$ and $\ell = lcm (2x, y)$: Given that the equation $xy+3g+7\ell = 168$ holds, find the largest possible value of $2x + y$.
[b]7.2.[/b] Marco writes the polynomials $$f(x) = nx^4 +2x^3 +3x^2 +4x+5$$ and $$g(x) = a(x-1)^4 +b(x-1)^3 +6(x-1)^2 + d(x - 1) + e,$$ where $n, a, b, d, e$ are real numbers. He notices that $g(i) = f(i) - |i|$ for each integer $i$ satisfying $-5 \le i \le -1$. Then $n^2$ can be expressed as $p/q$ for relatively prime positive integers $p, q$. Find $p + q$.
[b]7.3. [/b]Equilateral $\vartriangle ABC$ is inscribed in a circle with center $O$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $BC$, respectively. Segment $\overline{CD}$ intersects $\overline{AB}$ and $\overline{AE}$ at $Y$ and $X$, respectively. Given that $\vartriangle DXE$ and $\vartriangle AXC$ have equal area, $\vartriangle AXY$ has area $ 1$, and $\vartriangle ABC$ has area $52$, find the area of $\vartriangle BXC$.
[u]Round 8[/u]
[b]8.[/b] Let $A$ be the number of total webpage visits our website received last month. Let $B$ be the number photos in our photo collection from ABMC onsite 2017. Let $M$ be the mean speed round score. Further, let $C$ be the number of times the letter c appears in our problem bank. Estimate
$$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766251p24226451]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
MOAA Accuracy Rounds, 2019
[b]p1.[/b] Farmer John wants to bring some cows to a pasture with grass that grows at a constant rate. Initially, the pasture has some nonzero amount of grass and it will stop growing if there is no grass left. The pasture sustains $100$ cows for ten days. The pasture can also sustain $100$ cows for five days, and then $120$ cows for three more days. If cows eat at a constant rate, fund the maximum number of cows Farmer John can bring to the pasture so that they can be sustained indefinitely.
[b]p2.[/b] Sam is learning basic arithmetic. He may place either the operation $+$ or $-$ in each of the blank spots between the numbers below: $$5\,\, \_ \,\, 8\,\, \_ \,\,9\,\, \_ \,\,7\,\,\_ \,\,2\,\,\_ \,\,3$$ In how many ways can he place the operations so the result is divisible by $3$?
[b]p3.[/b] Will loves the color blue, but he despises the color red. In the $5\times 6$ rectangular grid below, how many rectangles are there containing at most one red square and with sides contained in the gridlines?
[img]https://cdn.artofproblemsolving.com/attachments/1/7/7ce55bdc9e05c7c514dddc7f8194f3031b93c4.png[/img]
[b]p4.[/b] Let $r_1, r_2, r_3$ be the three roots of a cubic polynomial $P(x)$. Suppose that $$\frac{P(2) + P(-2)}{P(0)}= 200.$$ If $\frac{1}{r_1r_2}+ \frac{1}{r_2r_3}+\frac{1}{r_3r_1}= \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$.
[b]p5.[/b] Consider a rectangle $ABCD$ with $AB = 3$ and $BC = 1$. Let $O$ be the intersection of diagonals $AC$ and $BD$. Suppose that the circumcircle of $ \vartriangle ADO$ intersects line $AB$ again at $E \ne A$. Then, the length $BE$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
[b]p6.[/b] Let $ABCD$ be a square with side length $100$ and $M$ be the midpoint of side $AB$. The circle with center $M$ and radius $50$ intersects the circle with center $D$ and radius $100$ at point $E$. $CE$ intersects $AB$ at $F$. If $AF = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$.
[b]p7.[/b] How many pairs of real numbers $(x, y)$, with $0 < x, y < 1$ satisfy the property that both $3x + 5y$ and $5x + 2y$ are integers?
[b]p8.[/b] Sebastian is coloring a circular spinner with $4$ congruent sections. He randomly chooses one of four colors for each of the sections. If two or more adjacent sections have the same color, he fuses them and considers them as one section. (Sections meeting at only one point are not adjacent.) Suppose that the expected number of sections in the final colored spinner is equal to $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]p9.[/b] Let $ABC$ be a triangle and $D$ be a point on the extension of segment $BC$ past $C$. Let the line through $A$ perpendicular to $BC$ be $\ell$. The line through $B$ perpendicular to $AD$ and the line through $C$ perpendicular to $AD$ intersect $\ell$ at $H_1$ and $H_2$, respectively. If $AB = 13$, $BC = 14$, $CA = 15$, and $H_1H_2 = 1001$, find $CD$.
[b]p10.[/b] Find the sum of all positive integers $k$ such that
$$\frac21 -\frac{3}{2 \times 1}+\frac{4}{3\times 2\times 1} + ...+ (-1)^{k+1} \frac{k+1}{k\times (k - 1)\times ... \times 2\times 1} \ge 1 + \frac{1}{700^3}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1999 Switzerland Team Selection Test, 7
A square is dissected into rectangles with sides parallel to the sides of the square. For each of these rectangles, the ratio of its shorter side to its longer side is considered. Show that the sum of all these ratios is at least $1$.
2010 Contests, 3
What is the biggest shadow that a cube of side length $1$ can have, with the sun at its peak?
Note: "The biggest shadow of a figure with the sun at its peak" is understood to be the biggest possible area of the orthogonal projection of the figure on a plane.
2005 Estonia National Olympiad, 2
Consider a convex $n$-gon in the plane with $n$ being odd. Prove that if one may find a point in the plane from which all the sides of the $n$-gon are viewed at equal angles, then this point is unique. (We say that segment $AB$ is viewed at angle $\gamma$ from point $O$ iff $\angle AOB =\gamma$ .)
1997 Romania National Olympiad, 1
Let $C_1,C_2,..., C_n$ , $(n\ge 3)$ be circles having a common point $M$. Three straight lines passing through $M$ intersect again the circles in $A_1, A_2,..., A_n$ ; $B_1,B_2,..., B_n$ and $X_1,X_2,..., X_n$ respectively. Prove that if
$$A_1A_2 =A_2A_3 =...=A_{n-1}A_n$$ and $$B_1B_2 =B_2B_3 =...=B_{n-1}B_n$$ then $$X_1X_2 =X_2X_3 =...=X_{n-1}X_n.$$
2003 AMC 12-AHSME, 25
Three points are chosen randomly and independently on a circle. What is the probability that all three pairwise distances between the points are less than the radius of the circle?
$ \textbf{(A)}\ \frac{1}{36} \qquad
\textbf{(B)}\ \frac{1}{24} \qquad
\textbf{(C)}\ \frac{1}{18} \qquad
\textbf{(D)}\ \frac{1}{12} \qquad
\textbf{(E)}\ \frac{1}{9}$
Russian TST 2016, P1
The squares $ABCD$ and $AXYZ$ are given. It turns out that $CDXY$ is a cyclic quadrilateral inscribed in the circle $\Omega$, and the points $A, B$ and $Z{}$ lie inside this circle. Prove that either $AB = AX$ or $AC\perp{}XY$.
2011 Princeton University Math Competition, A8
Let $ABC$ be a triangle with $\angle BAC = 60^\circ, BA = 2$, and $CA = 3$. A point $M$ is located inside $ABC$ such that $MB = 1$ and $MC = 2$. A semicircle tangent to $MB$ and $MC$ has its center $O$ on $BC$. Let $P$ be the intersection of the angle bisector of $\angle BAC$ and the perpendicular bisector of $AC$. If the ratio $OP/MO$ is $a/b$, where $a$ and $b$ are positive integers and $\gcd(a, b) = 1$, find $a + b$.
2010 Sharygin Geometry Olympiad, 2
Each of two equal circles $\omega_1$ and $\omega_2$ passes through the center of the other one. Triangle $ABC$ is inscribed into $\omega_1$, and lines $AC, BC$ touch $\omega_2$ . Prove that $cosA + cosB = 1$.
2020 ELMO Problems, P4
Let acute scalene triangle $ABC$ have orthocenter $H$ and altitude $AD$ with $D$ on side $BC$. Let $M$ be the midpoint of side $BC$, and let $D'$ be the reflection of $D$ over $M$. Let $P$ be a point on line $D'H$ such that lines $AP$ and $BC$ are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^\circ$.
[i]Proposed by Daniel Hu.[/i]
2013 Hitotsubashi University Entrance Examination, 2
Given four points $O,\ A,\ B,\ C$ on a plane such that $OA=4,\ OB=3,\ OC=2,\ \overrightarrow{OB}\cdot \overrightarrow{OC}=3.$
Find the maximum area of $\triangle{ABC}$.
2006 Sharygin Geometry Olympiad, 10.3
Given a circle and a point $P$ inside it, different from the center. We consider pairs of circles tangent to the given internally and to each other at point $P$. Find the locus of the points of intersection of the common external tangents to these circles.
2017 Harvard-MIT Mathematics Tournament, 6
Let $ABCD$ be a convex quadrilateral with $AC = 7$ and $BD = 17$. Let $M$, $P$, $N$, $Q$ be the midpoints of sides $AB$, $BC$, $CD$, $DA$ respectively. Compute $MN^2 + PQ^2$
[color = red]The official problem statement does not have the final period.[/color]
2015 Sharygin Geometry Olympiad, 2
A convex quadrilateral is given. Using a compass and a ruler construct a point such that its projections to the sidelines of this quadrilateral are the vertices of a parallelogram.
(A. Zaslavsky)
1989 IMO, 4
Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that:
\[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}}
\]
2013 Sharygin Geometry Olympiad, 2
Let $ABCD$ is a tangential quadrilateral such that $AB=CD>BC$. $AC$ meets $BD$ at $L$. Prove that $\widehat{ALB}$ is acute.
[hide]According to the jury, they want to propose a more generalized problem is to prove $(AB-CD)^2 < (AD-BC)^2$, but this problem has appeared some time ago[/hide]