Found problems: 25757
Kyiv City MO Seniors Round2 2010+ geometry, 2013.10.3
Given a triangle $ ABC $, $ AD $ is its angle bisector. Let $ E, F $ be the centers of the circles inscribed in the triangles $ ADC $ and $ ADB $, respectively. Denote by $ \omega $, the circle circumscribed around the triangle $ DEF $, and by $ Q $, the intersection point of $ BE $ and $ CF $, and $ H, J, K, M $ , respectively the second intersection point of the lines $ CE, CF, BE, BF $ with circle $ \omega $. Let $\omega_1, \omega_2 $ the circles be circumscribed around the triangles $ HQJ $ and $ KQM $ Prove that the intersection point of the circles $\omega_1, \omega_2 $ different from $ Q $ lies on the line $ AD $.
(Kivva Bogdan)
1965 IMO, 5
Consider $\triangle OAB$ with acute angle $AOB$. Thorugh a point $M \neq O$ perpendiculars are drawn to $OA$ and $OB$, the feet of which are $P$ and $Q$ respectively. The point of intersection of the altitudes of $\triangle OPQ$ is $H$. What is the locus of $H$ if $M$ is permitted to range over
a) the side $AB$;
b) the interior of $\triangle OAB$.
1996 IMO Shortlist, 9
In the plane, consider a point $ X$ and a polygon $ \mathcal{F}$ (which is not necessarily convex). Let $ p$ denote the perimeter of $ \mathcal{F}$, let $ d$ be the sum of the distances from the point $ X$ to the vertices of $ \mathcal{F}$, and let $ h$ be the sum of the distances from the point $ X$ to the sidelines of $ \mathcal{F}$. Prove that $ d^2 \minus{} h^2\geq\frac {p^2}{4}.$
Croatia MO (HMO) - geometry, 2012.7
Let the points $M$ and $N$ be the intersections of the inscribed circle of the right-angled triangle $ABC$, with sides $AB$ and $CA$ respectively , and points $P$ and $Q$ respectively be the intersections of the ex-scribed circles opposite to vertices $B$ and $C$ with direction $BC$. Prove that the quadrilateral $MNPQ$ is a cyclic if and only if the triangle $ABC$ is right-angled with a right angle at the vertex $A$.
2011 AMC 10, 18
Rectangle $ABCD$ has $AB=6$ and $BC=3$. Point $M$ is chosen on side $AB$ so that $\angle AMD = \angle CMD$. What is the degree measure of $\angle AMD$?
$ \textbf{(A)}\ 15 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 45 \qquad
\textbf{(D)}\ 60 \qquad
\textbf{(E)}\ 75 $
2018 Peru IMO TST, 7
Let $ABC$ be, with $AC>AB$, an acute-angled triangle with circumcircle $\Gamma$ and $M$ the midpoint of side $BC$. Let $N$ be a point in the interior of $\bigtriangleup ABC$. Let $D$ and $E$ be the feet of the perpendiculars from $N$ to $AB$ and $AC$, respectively. Suppose that $DE\perp AM$. The circumcircle of $\bigtriangleup ADE$ meets $\Gamma$ at $L$ ($L\neq A$), lines $AL$ and $DE$ intersects at $K$ and line $AN$ meets $\Gamma$ at $F$ ($F\neq A$). Prove that if $N$ is the midpoint of the segment $AF$ then $KA=KF$.
2000 Stanford Mathematics Tournament, 22
An equilateral triangle with sides of length $4$ has an isosceles triangle with the same base and half the height cut out of it.
Find the remaining area
2021 Harvard-MIT Mathematics Tournament., 2
Let $X_0$ be the interior of a triangle with side lengths $3, 4,$ and $5$. For all positive integers $n$, define $X_n$ to be the set of points within $1$ unit of some point in $X_{n-1}$. The area of the region outside $X_{20}$ but inside $X_{21}$ can be written as $a\pi + b$, for integers $a$ and $b$. Compute $100a + b$.
2006 Taiwan TST Round 1, 2
Let $p,q$ be two distinct odd primes. Calculate
$\displaystyle \sum_{j=1}^{\frac{p-1}{2}}\left \lfloor \frac{qj}{p}\right \rfloor +\sum_{j=1}^{\frac{q-1}{2}}\left \lfloor \frac{pj}{q}\right\rfloor$.
2014 Contests, 1
Let $ABC$ be a triangle, let ${A}'$, ${B}'$, ${C}'$ be the orthogonal projections of the vertices $A$ ,$B$ ,$C$ on the lines $BC$, $CA$ and $AB$, respectively, and let $X$ be a point on the line $A{A}'$.Let $\gamma_{B}$ be the circle through $B$ and $X$, centred on the line $BC$, and let $\gamma_{C}$ be the circle through $C$ and $X$, centred on the line $BC$.The circle $\gamma_{B}$ meets the lines $AB$ and $B{B}'$ again at $M$ and ${M}'$, respectively, and the circle $\gamma_{C}$ meets the lines $AC$ and $C{C}'$ again at $N$ and ${N}'$, respectively.Show that the points $M$, ${M}'$, $N$ and ${N}'$ are collinear.
2015 Iran MO (2nd Round), 1
In quadrilateral $ABCD$ , $AC$ is bisector of $\hat{A}$ and $\widehat{ADC}=\widehat{ACB}$. $X$ and $Y$ are feet of perpendicular from $A$ to $BC$ and $CD$,respectively.Prove that orthocenter of triangle $AXY$ is on $BD$.
2020 HMNT (HMMO), 1
In the Cartesian plane, a line segment with midpoint $(2020,11)$ has one endpoint at $(a,0)$ and the other endpoint on the line $y=x$. Compute $a$.
2009 Princeton University Math Competition, 4
Tetrahedron $ABCD$ has sides of lengths, in increasing order, $7, 13, 18, 27, 36, 41$. If $AB=41$, then what is the length of $CD$?
1949 Moscow Mathematical Olympiad, 159
Consider a closed broken line of perimeter $1$ on a plane. Prove that a disc of radius $\frac14$ can cover this line.
2002 AIME Problems, 13
In triangle $ABC,$ point $D$ is on $\overline{BC}$ with $CD=2$ and $DB=5,$ point $E$ is on $\overline{AC}$ with $CE=1$ and $EA=3,$ $AB=8,$ and $\overline{AD}$ and $\overline{BE}$ intersect at $P.$ Points $Q$ and $R$ lie on $\overline{AB}$ so that $\overline{PQ}$ is parallel to $\overline{CA}$ and $\overline{PR}$ is parallel to $\overline{CB}.$ It is given that the ratio of the area of triangle $PQR$ to the area of triangle $ABC$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2018 India PRMO, 7
A point $P$ in the interior of a regular hexagon is at distances $8,8,16$ units from three consecutive vertices of the hexagon, respectively. If $r$ is radius of the circumscribed circle of the hexagon, what is the integer closest to $r$?
2008 Poland - Second Round, 2
In the convex pentagon $ ABCDE$ following equalities holds: $ \angle ABD\equal{} \angle ACE, \angle ACB\equal{}\angle ACD, \angle ADC\equal{}\angle ADE$ and $ \angle ADB\equal{}\angle AEC$. The point $S$ is the intersection of the segments $BD$ and $CE$. Prove that lines $AS$ and $CD$ are perpendicular.
2011 Canadian Open Math Challenge, 9
ABC is a triangle with coordinates A =(2, 6), B =(0, 0), and C =(14, 0).
(a) Let P be the midpoint of AB. Determine the equation of the line perpendicular to AB passing through P.
(b) Let Q be the point on line BC for which PQ is perpendicular to AB. Determine the length of AQ.
(c) There is a (unique) circle passing through the points A, B, and C. Determine the radius of this circle.
2020 IberoAmerican, 1
Let $ABC$ be an acute scalene triangle such that $AB <AC$. The midpoints of sides $AB$ and $AC$ are $M$ and $N$, respectively. Let $P$ and $Q$ be points on the line $MN$ such that $\angle CBP = \angle ACB$ and $\angle QCB = \angle CBA$. The circumscribed circle of triangle $ABP$ intersects line $AC$ at $D$ ($D\ne A$) and the circumscribed circle of triangle $AQC$ intersects line $AB$ at $E$ ($E \ne A$). Show that lines $BC, DP,$ and $EQ$ are concurrent.
Nicolás De la Hoz, Colombia
1995 May Olympiad, 4
We have four white equilateral triangles of $3$ cm on each side and join them by their sides to obtain a triangular base pyramid. At each edge of the pyramid we mark two red dots that divide it into three equal parts. Number the red dots, so that when you scroll them in the order they were numbered, result a path with the smallest possible perimeter. How much does that path measure?
MOAA Team Rounds, 2019.5
Let $ABC$ be a triangle with $AB = AC = 10$ and $BC = 12$. Define $\ell_A$ as the line through $A$ perpendicular to $\overline{AB}$. Similarly, $\ell_B$ is the line through $B$ perpendicular to $\overline{BC}$ and $\ell_C$ is the line through $C$ perpendicular to $\overline{CA}$. These three lines $\ell_A, \ell_B, \ell_C$ form a triangle with perimeter $m/n$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
2009 Iran MO (2nd Round), 1
We have a $ (n+2)\times n $ rectangle and we’ve divided it into $ n(n+2) \ \ 1\times1 $ squares. $ n(n+2) $ soldiers are standing on the intersection points ($ n+2 $ rows and $ n $ columns). The commander shouts and each soldier stands on its own location or gaits one step to north, west, east or south so that he stands on an adjacent intersection point. After the shout, we see that the soldiers are standing on the intersection points of a $ n\times(n+2) $ rectangle ($ n $ rows and $ n+2 $ columns) such that the first and last row are deleted and 2 columns are added to the right and left (To the left $1$ and $1$ to the right).
Prove that $ n $ is even.
2008 China Team Selection Test, 1
Let $ ABC$ be a triangle, line $ l$ cuts its sides $ BC,CA,AB$ at $ D,E,F$, respectively. Denote by $ O_{1},O_{2},O_{3}$ the circumcenters of triangle $ AEF,BFD,CDE$, respectively. Prove that the orthocenter of triangle $ O_{1}O_{2}O_{3}$ lies on line $ l$.
2000 Bundeswettbewerb Mathematik, 3
A convex quadrilateral $ABCD$ is inscribed in a semicircle with diameter $AB$. The diagonals $AC,BD$ intersect at $S$, and $T$ is the projection of $S$ on $AB$. Show that $ST$ bisects angle $CTD$.
2013 Benelux, 3
Let $\triangle ABC$ be a triangle with circumcircle $\Gamma$, and let $I$ be the center of the incircle of $\triangle ABC$. The lines $AI$, $BI$ and $CI$ intersect $\Gamma$ in $D \ne A$, $E \ne B$ and $F \ne C$. The tangent lines to $\Gamma$ in $F$, $D$ and $E$ intersect the lines $AI$, $BI$ and $CI$ in $R$, $S$ and $T$, respectively. Prove that
\[\vert AR\vert \cdot \vert BS\vert \cdot \vert CT\vert = \vert ID\vert \cdot \vert IE\vert \cdot \vert IF\vert.\]