Found problems: 25757
1986 Federal Competition For Advanced Students, P2, 1
Show that a square can be inscribed in any regular polygon.
2012 BAMO, 4
Laura won the local math olympiad and was awarded a "magical" ruler. With it, she can draw (as usual) lines in the plane, and she can also measure segments and replicate them anywhere in the plane; but she can also divide a segment into as many equal parts as she wishes; for instance, she can divide any segment into $17$ equal parts. Laura drew a parallelogram $ABCD$ and decided to try out her magical ruler; with it, she found the midpoint $M$ of side $CD$, and she extended $CB$ beyond $B$ to point $N$ so that segments $CB$ and $BN$ were equal in length. Unfortunately, her mischievous little brother came along and erased everything on Laura's picture except for points $A, M$, and $N$. Using Laura's magical ruler, help her reconstruct the original parallelogram $ABCD$: write down the steps that she needs to follow and prove why this will lead to reconstructing the original parallelogram $ABCD$.
1941 Moscow Mathematical Olympiad, 078
Given points $M$ and $N$, the bases of heights $AM$ and $BN$ of $\vartriangle ABC$ and the line to which the side $AB$ belongs. Construct $\vartriangle ABC$.
2008 Purple Comet Problems, 8
A container is shaped like a square-based pyramid where the base has side length $23$ centimeters and the height is $120$ centimeters. The container is open at the base of the pyramid and stands in an open field with its vertex pointing down. One afternoon $5$ centimeters of rain falls in the open field partially filling the previously empty container. Find the depth in centimeters of the rainwater in the bottom of the container after the rain.
2003 AMC 8, 8
$\textbf{Bake Sale}$
Four friends, Art, Roger, Paul and Trisha, bake cookies, and all cookies have the same thickness. The shapes of the cookies differ, as shown.
$\circ$ Art's cookies are trapezoids:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(5,0)--(5,3)--(2,3)--cycle);
draw(rightanglemark((5,3), (5,0), origin));
label("5 in", (2.5,0), S);
label("3 in", (5,1.5), E);
label("3 in", (3.5,3), N);[/asy]
$\circ$ Roger's cookies are rectangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(4,0)--(4,2)--(0,2)--cycle);
draw(rightanglemark((4,2), (4,0), origin));
draw(rightanglemark((0,2), origin, (4,0)));
label("4 in", (2,0), S);
label("2 in", (4,1), E);[/asy]
$\circ$ Paul's cookies are parallelograms:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(2.5,2)--(-0.5,2)--cycle);
draw((2.5,2)--(2.5,0), dashed);
draw(rightanglemark((2.5,2),(2.5,0), origin));
label("3 in", (1.5,0), S);
label("2 in", (2.5,1), W);[/asy]
$\circ$ Trisha's cookies are triangles:
[asy]size(80);defaultpen(linewidth(0.8));defaultpen(fontsize(8));
draw(origin--(3,0)--(3,4)--cycle);
draw(rightanglemark((3,4),(3,0), origin));
label("3 in", (1.5,0), S);
label("4 in", (3,2), E);[/asy]
Each friend uses the same amount of dough, and Art makes exactly 12 cookies. Who gets the fewest cookies from one batch of cookie dough?
$ \textbf{(A)}\ \text{Art}\qquad\textbf{(B)}\ \text{Roger}\qquad\textbf{(C)}\ \text{Paul}\qquad\textbf{(D)}\ \text{Trisha}\qquad\textbf{(E)}\ \text{There is a tie for fewest.}$
2023 Romania JBMO TST, P2
Let $ABC$ be an acute-angled triangle with $BC > AB$, such that the points $A$, $H$, $I$ and $C$ are concyclic (where $H$ is the orthocenter and $I$ is the incenter of triangle $ABC$). The line $AC$ intersects the circumcircle of triangle $BHC$ at point $T$, and the line $BC$ intersects the circumcircle of triangle $AHC$ at point $P$. If the lines $PT$ and $HI$ are parallel, determine the measures of the angles of triangle $ABC$.
2024 Stars of Mathematics, P4
Let $\gamma_1$ and $\gamma_2$ be two disjoint circles, with centers $O_1$ and $O_2$. One of their exterior tangents cuts $\gamma_1$ in $A_1$ and $\gamma_2$ in $A_2$. One of their common internal tangents cuts $\gamma_1$ in $B_1$ and $\gamma_2$ in $B_2$, and the other common internal tangent cuts $\gamma_1$ in $C_1$ and $\gamma_2$ int $C_2$. Let $B_1B_2$ and $C_1C_2$ intersect in $O$. $X$ is the point where $A_2O$ cuts $\gamma_1$ and $OX<OB_1$. Similarly, $Y$ is the point where $A_1O$ cuts $\gamma_2$ and $OY<OB_2$. The perpendicular in $X$ to $OX$ cuts $O_1B_1$ in $P$ and the perpendicular in $Y$ to $OY$ cuts $O_2C_2$ in $Q$. Prove that $PQ$ and $A_1A_2$ are parallel.
[i]Proposed by Flavian Georgescu[/i]
Novosibirsk Oral Geo Oly IX, 2020.2
A $2 \times 2$ square was cut out of a sheet of grid paper. Using only a ruler without divisions and without going beyond the square, divide the diagonal of the square into $6$ equal parts.
1963 German National Olympiad, 5
Given is a square with side length $a$. A distance $PQ$ of length $p$, where $p < a$, moves so that its end points are always on the sides of the square. What is the geometric locus of the midpoints of the segments $PQ$?
2011 HMNT, 8
Let $G,A_1,A_2,A_3,A_4,B_1,B_2,B_3,B_4,B_5$ be ten points on a circle such that $GA_1A_2A_3A_4$ is a regular pentagon and $GB-1B_2B_3B_4B_5$ is a regular hexagon, and $B_1$ lies on minor arc $GA_1$. Let $B_5B_3$ intersect $B_1A_2$ at $G_1$, and let $B_5A_3$ intersect $GB_3$ at $G_2$. Determine the degree measure of $\angle GG2G_1$.
2018 Iran Team Selection Test, 1
Two circles $\omega_1(O)$ and $\omega_2$ intersect each other at $A,B$ ,and $O$ lies on $\omega_2$. Let $S$ be a point on $AB$ such that $OS\perp AB$. Line $OS$ intersects $\omega_2$ at $P$ (other than $O$). The bisector of $\hat{ASP}$ intersects $\omega_1$ at $L$ ($A$ and $L$ are on the same side of the line $OP$). Let $K$ be a point on $\omega_2$ such that $PS=PK$ ($A$ and $K$ are on the same side of the line $OP$). Prove that $SL=KL$.
[i]Proposed by Ali Zamani [/i]
2003 China Second Round Olympiad, 3
Let a space figure consist of $n$ vertices and $l$ lines connecting these vertices, with $n=q^2+q+1$, $l\ge q^2(q+1)^2+1$, $q\ge2$, $q\in\mathbb{N}$. Suppose the figure satisfies the following conditions: every four vertices are non-coplaner, every vertex is connected by at least one line, and there is a vertex connected by at least $p+2$ lines. Prove that there exists a space quadrilateral in the figure, i.e. a quadrilateral with four vertices $A, B, C, D$ and four lines $ AB, BC, CD, DA$ in the figure.
ABMC Team Rounds, 2022
[u]Round 5[/u]
[b]5.1[/b] A circle with a radius of $1$ is inscribed in a regular hexagon. This hexagon is inscribed in a larger circle. If the area that is outside the hexagon but inside the larger circle can be expressed as $\frac{a\pi}{b} - c\sqrt{d}$, where $a, b, c, d$ are positive integers, $a, b$ are relatively prime, and no prime perfect square divides into $d$. find the value of $a + b + c + d$.
[b]5.2[/b] At a dinner party, $10$ people are to be seated at a round table. If person A cannot be seated next to person $B$ and person $C$ must be next to person $D$, how many ways can the 10 people be seated? Consider rotations of a configuration identical.
[b]5.3[/b] Let $N$ be the sum of all the positive integers that are less than $2022$ and relatively prime to $1011$. Find $\frac{N}{2022}$.
[u]Round 6[/u]
[b]6.1[/b] The line $y = m(x - 6)$ passes through the point $ A$ $(6, 0)$, and the line $y = 8 -\frac{x}{m}$ pass through point $B$ $(0,8)$. The two lines intersect at point $C$. What is the largest possible area of triangle $ABC$?
[b]6.2[/b] Let $N$ be the number of ways there are to arrange the letters of the word MATHEMATICAL such that no two As can be adjacent. Find the last $3$ digits of $\frac{N}{100}$.
[b]6.3[/b] Find the number of ordered triples of integers $(a, b, c)$ such that $|a|, |b|, |c| \le 100$ and $3abc = a^3 + b^3 + c^3$.
[u]Round 7[/u]
[b]7.1[/b] In a given plane, let $A, B$ be points such that $AB = 6$. Let $S$ be the set of points such that for any point $C$ in $S$, the circumradius of $\vartriangle ABC$ is at most $6$. Find $a + b + c$ if the area of $S$ can be expressed as $a\pi + b\sqrt{c}$ where $a, b, c$ are positive integers, and $c$ is not divisible by the square of any prime.
[b]7.2[/b] Compute $\sum_{1\le a<b<c\le 7} abc$.
[b]7.3[/b] Three identical circles are centered at points $A, B$, and $C$ respectively and are drawn inside a unit circle. The circles are internally tangent to the unit circle and externally tangent to each other. A circle centered at point $D$ is externally tangent to circles $A, B$, and $C$. If a circle centered at point $E$ is externally tangent to circles $A, B$, and $D$, what is the radius of circle $E$? The radius of circle $E$ can be expressed as $\frac{a\sqrt{b}-c}{d}$ where $a, b, c$, and d are all positive integers, gcd(a, c, d) = 1, and b is not divisible by the square of any prime. What is the sum of $a + b + c + d$?
[u]Round 8[/u]
[b]8.[/b] Let $A$ be the number of unused Algebra problems in our problem bank. Let $B$ be the number of times the letter ’b’ appears in our problem bank. Let M be the median speed round score. Finally, let $C$ be the number of correct answers to Speed Round $1$. Estimate $$A \cdot B + M \cdot C.$$
Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2826128p24988676]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Contests, 2
Let $P$ be an interior point of the triangle $ABC$ which is not on the median belonging to $BC$ and satisfying $\angle CAP = \angle BCP. \: BP \cap CA = \{B'\} \: , \: CP \cap AB = \{C'\}$ and $Q$ is the second point of intersection of $AP$ and the circumcircle of $ABC. \: B'Q$ intersects $CC'$ at $R$ and $B'Q$ intersects the line through $P$ parallel to $AC$ at $S.$ Let $T$ be the point of intersection of lines $B'C'$ and $QB$ and $T$ be on the other side of $AB$ with respect to $C.$ Prove that
\[\angle BAT = \angle BB'Q \: \Longleftrightarrow \: |SQ|=|RB'| \]
2003 Tournament Of Towns, 2
Triangle $ABC$ is given. Prove that $\frac{R}{r} > \frac{a}{h}$, where $R$ is the radius of the circumscribed circle, $r$ is the radius of the inscribed circle, $a$ is the length of the longest side, $h$ is the length of the shortest altitude.
1998 Harvard-MIT Mathematics Tournament, 6
circle is inscribed in an equilateral triangle of side length $1$. Tangents to the circle are drawn that cut off equilateral triangles at each corner. Circles are inscribed in each of these equilateral triangles. If this process is repeated infinitely many times, what is the sum of the areas of all the circles?
[img]https://cdn.artofproblemsolving.com/attachments/c/e/ef4000989155708db8cfa674dd00857afb9919.png[/img]
2009 Princeton University Math Competition, 3
A polygon is called concave if it has at least one angle strictly greater than $180^{\circ}$. What is the maximum number of symmetries that an 11-sided concave polygon can have? (A [i]symmetry[/i] of a polygon is a way to rotate or reflect the plane that leaves the polygon unchanged.)
2019 Sharygin Geometry Olympiad, 19
Let $AL_a$, $BL_b$, $CL_c$ be the bisecors of triangle $ABC$. The tangents to the circumcircle of $ABC$ at $B$ and $C$ meet at point $K_a$, points $K_b$, $K_c$ are defined similarly. Prove that the lines $K_aL_a$, $K_bL_b$ and $K_cL_c$ concur.
2013 NZMOC Camp Selection Problems, 6
$ABCD$ is a quadrilateral having both an inscribed circle (one tangent to all four sides) with center $I,$ and a circumscribed circle with center $O$. Let $S$ be the point of intersection of the diagonals of $ABCD$. Show that if any two of $S, I$ and $O$ coincide, then $ABCD$ is a square (and hence all three coincide).
MathLinks Contest 2nd, 1.3
Given are on a line three points $A, B, C$ such that $AB = 1$ and $BC = x$. Consider the circles $\Omega_a, \Omega_b$ and $\Omega_c$ which are tangent to the given line at the points $A, B, C$ respectively, and such that $\Omega_b$ is tangent externally with both $\Omega_a$ and $\Omega_c$ in points $M, N$ respectively. Find all values of the radius of the circle $\Omega_b$ for which the triangle $BMN$ is isosceles.
2000 Dutch Mathematical Olympiad, 3
Isosceles, similar triangles $QPA$ and $SPB$ are constructed (outwards) on the sides of parallelogram $PQRS$ (where $PQ = AQ$ and $PS = BS$). Prove that triangles $RAB$, $QPA$ and $SPB$ are similar.
Croatia MO (HMO) - geometry, 2022.3
Let $ABC$ be an acute-angled triangle in which $|AB| < |AC|$ and let circle $k$ with center $O$ be its circumscribed circle. Let $P$ and $Q$ be points on sides $\overline{BC}$ and $\overline{AB}$ respectively such that $AQPO$ is a parallelogram. Let $K$ and $L$ be the intersections of the perpendicular bisector of $\overline{OP}$ with circle $k$, where $K$ is on the shorter arc $AB$. Let $M$ be the second intersection of the line $KQ$ with the circle $k$. Prove that the point $A$ belongs to the bisector of the angle $\angle QLM$.
2005 Thailand Mathematical Olympiad, 3
Triangle $\vartriangle ABC$ is isosceles with $AB = AC$ and $\angle ABC = 2\angle BAC$. Compute $\frac{AB}{BC}$ .
2019 China Second Round Olympiad, 1
In acute triangle $\triangle ABC$, $M$ is the midpoint of segment $BC$. Point $P$ lies in the interior of $\triangle ABC$ such that $AP$ bisects $\angle BAC$. Line $MP$ intersects the circumcircles of $\triangle ABP,\triangle ACP$ at $D,E$ respectively. Prove that if $DE=MP$, then $BC=2BP$.
2020 CMIMC Geometry, 4
Triangle $ABC$ has a right angle at $B$. The perpendicular bisector of $\overline{AC}$ meets segment $\overline{BC}$ at $D$, while the perpendicular bisector of segment $\overline{AD}$ meets $\overline{AB}$ at $E$. Suppose $CE$ bisects acute $\angle ACB$. What is the measure of angle $ACB$?