This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2005 Putnam, A3

Let $p(z)$ be a polynomial of degree $n,$ all of whose zeros have absolute value $1$ in the complex plane. Put $g(z)=\frac{p(z)}{z^{n/2}}.$ Show that all zeros of $g'(z)=0$ have absolute value $1.$

Geometry Mathley 2011-12, 3.4

A triangle $ABC$ is inscribed in the circle $(O,R)$. A circle $(O',R')$ is internally tangent to $(O)$ at $I$ such that $R < R'$. $P$ is a point on the circle $(O)$. Rays $PA, PB, PC$ meet $(O')$ at $A_1,B_1,C_1$. Let $A_2B_2C_2$ be the triangle formed by the intersections of the line symmetric to $B_1C_1$ about $BC$, the line symmetric to $C_1A_1$ about $CA$ and the line symmetric to $A_1B_1$ about $AB$. Prove that the circumcircle of $A_2B_2C_2$ is tangent to $(O)$. Nguyễn Văn Linh

Kyiv City MO 1984-93 - geometry, 1987.8.2

Construct a trapezoid given the midpoints of the legs, the point of intersection of the diagonals and the foot of the perpendicular, drawn from this point on the larger base.

2021 Balkan MO Shortlist, G4

Let $ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$. Let the height from $A$ cut its side $BC$ at $D$. Let $I, I_B, I_C$ be the incenters of triangles $ABC, ABD, ACD$ respectively. Let also $EB, EC$ be the excenters of $ABC$ with respect to vertices $B$ and $C$ respectively. If $K$ is the point of intersection of the circumcircles of $E_CIB_I$ and $E_BIC_I$, show that $KI$ passes through the midpoint $M$ of side $BC$.

1989 National High School Mathematics League, 1

Tags: geometry
In $\triangle ABC$, $AB>AC$, bisector of outer angle $\angle A$ intersects circumcircle of $\triangle ABC$ at $E$. Projection of $E$ on $AB$ is $F$. Prove that $2AF=AB-AC$.

2000 JBMO ShortLists, 21

Tags: geometry
All the angles of the hexagon $ABCDEF$ are equal. Prove that \[AB-DE=EF-BC=CD-FA \]

2009 Indonesia TST, 3

Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.

1940 Moscow Mathematical Olympiad, 068

The center of the circle circumscribing $\vartriangle ABC$ is mirrored through each side of the triangle and three points are obtained: $O_1, O_2, O_3$. Reconstruct $\vartriangle ABC$ from $O_1, O_2, O_3$ if everything else is erased.

2008 Czech-Polish-Slovak Match, 2

$ABCDEF$ is a convex hexagon, such that $|\angle FAB| = |\angle BCD| =|\angle DEF|$ and $|AB| =|BC|,$ $|CD| = |DE|$, $|EF| = |FA|$. Prove that the lines $AD$, $BE$ and $CF$ are concurrent.

2012 ELMO Shortlist, 2

In triangle $ABC$, $P$ is a point on altitude $AD$. $Q,R$ are the feet of the perpendiculars from $P$ to $AB,AC$, and $QP,RP$ meet $BC$ at $S$ and $T$ respectively. the circumcircles of $BQS$ and $CRT$ meet $QR$ at $X,Y$. a) Prove $SX,TY, AD$ are concurrent at a point $Z$. b) Prove $Z$ is on $QR$ iff $Z=H$, where $H$ is the orthocenter of $ABC$. [i]Ray Li.[/i]

1958 Polish MO Finals, 2

Each side of a convex quadrilateral $ ABCD $ is divided into three equal parts; a straight line is drawn through the dividing points of sides $ AB $ and $ AD $ that lie closer to vertex $ A $, and similarly for vertices $ B $, $ C $, $ D $. Prove that the center of gravity of the quadrilateral formed by the drawn lines coincides with the center of gravity of quadrilateral $ ABCD $.

Kyiv City MO Seniors Round2 2010+ geometry, 2015.10.2

Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers ${{O} _ {1}}$ and ${{O} _ {2}}$ intersect at points $A$ and $B$, respectively. The line ${{O} _ {1}} {{O} _ {2}}$ intersects ${{w} _ {1}}$ at the point $Q$, which does not lie inside the circle ${{w} _ {2}}$, and ${{w} _ {2}}$ at the point $X$ lying inside the circle ${{w} _ {1} }$. Around the triangle ${{O} _ {1}} AX$ circumscribe a circle ${{w} _ {3}}$ intersecting the circle ${{w} _ {1}}$ for the second time in point $T$. The line $QT$ intersects the circle ${{w} _ {3}}$ at the point $K$, and the line $QB$ intersects ${{w} _ {2}}$ the second time at the point $H$. Prove that a) points $T, \, \, X, \, \, B$ lie on one line; b) points $K, \, \, X, \, \, H$ lie on one line. (Vadym Mitrofanov)

2014 Contests, 2.

Tags: geometry , radii
Distinct points $A$, $B$ and $C$ lie on a line in this order. Point $D$ lies on the perpendicular bisector of the segment $BC$. Denote by $M$ the midpoint of the segment $BC$. Let $r$ be the radius of the incircle of the triangle $ABD$ and let $R$ be the radius of the circle with center lying outside the triangle $ACD$, tangent to $CD$, $AC$ and $AD$. Prove that $DM=r+R$.

2013 Macedonian Team Selection Test, Problem 1

The points $A_{1},A_{2},B_{1},B_{2},C_{1},C_{2}$ are on the sides $AB$, $BC$ and $AC$ of an acute triangle $ABC$ such that $AA_{1} = A_{1}A_{2} = A_{2}B = \frac{1}{3} AB$, $BB_{1} = B_{1}B_{2} = B_{2}C = \frac{1}{3}BC$ and $CC_{1} = C_{1}C_{2} = C_{2}A = \frac{1}{3} AC$. Let $k_{A}, k_{B}$ and $k_{C}$ be the circumcircles of the triangles $AA_{1}C_{2}$, $BB_{1}A_{2}$ and $CC_{1}B_{2}$ respectively. Furthermore, let $a_{B}$ and $a_{C}$ be the tangents to $k_{A}$ at $A_{1}$ and $C_{2}$, $b_{C}$ and $b_{A}$ the tangents to $k_{B}$ at $B_{1}$ and $A_{2}$ and $c_{A}$ and $c_{B}$ the tangents to $k_{C}$ at $C_{1}$ and $B_{2}$. Show that the perpendicular lines from the intersection points of $a_{B}$ and $b_{A}$, $b_{C}$ and $c_{B}$, $c_{A}$ and $a_{C}$ to $AB$, $BC$ and $CA$ respectively are concurrent.

2014 Moldova Team Selection Test, 1

Prove that there do not exist $4$ points in the plane such that the distances between any pair of them is an odd integer.

2013 Mid-Michigan MO, 5-6

[b]p1.[/b] The clock is $2$ hours $20$ minutes ahead of the correct time each week. The clock is set to the correct time at midnight Sunday to Monday. What time does this clock show at 6pm correct time on Thursday? [b]p2.[/b] Five cities $A,B,C,D$, and $E$ are located along the straight road in the alphabetical order. The sum of distances from $B$ to $A,C,D$ and $E$ is $20$ miles. The sum of distances from $C$ to the other four cities is $18$ miles. Find the distance between $B$ and $C$. [b]p3.[/b] Does there exist distinct digits $a, b, c$, and $d$ such that $\overline{abc}+\overline{c} = \overline{bda}$? Here $\overline{abc}$ means the three digit number with digits $a, b$, and $c$. [b]p4.[/b] Kuzya, Fyokla, Dunya, and Senya participated in a mathematical competition. Kuzya solved $8$ problems, more than anybody else. Senya solved $5$ problem, less than anybody else. Each problem was solved by exactly $3$ participants. How many problems were there? [b]p5.[/b] Mr Mouse got to the cellar where he noticed three heads of cheese weighing $50$ grams, $80$ grams, and $120$ grams. Mr. Mouse is allowed to cut simultaneously $10$ grams from any two of the heads and eat them. He can repeat this procedure as many times as he wants. Can he make the weights of all three pieces equal? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Moldova Team Selection Test, 6

Tags: geometry
Let $A$ be a point outside of the circle $\Omega$. Tangents from $A$ touch $\Omega$ in points $B$ and $C$. Point $C$, collinear with $A$ and $P$, is between $A$ and $P$, such that the circumcircle of triangle $ABP$ intersects $\Omega$ again in point $E$. Point $Q$ is on the segment $BP$, such that $\angle PEQ=2 \cdot \angle APB$. Prove that the lines $BP$ and $CQ$ are perpendicular.

2006 Croatia Team Selection Test, 3

Tags: geometry
Let $ABC$ be a triangle for which $AB+BC = 3AC$. Let $D$ and $E$ be the points of tangency of the incircle with the sides $AB$ and $BC$ respectively, and let $K$ and $L$ be the other endpoints of the diameters originating from $D$ and $E.$ Prove that $C , A, L$, and $K$ lie on a circle.

1970 IMO Shortlist, 3

In the tetrahedron $ABCD,\angle BDC=90^o$ and the foot of the perpendicular from $D$ to $ABC$ is the intersection of the altitudes of $ABC$. Prove that: \[ (AB+BC+CA)^2\le6(AD^2+BD^2+CD^2). \] When do we have equality?

2012 Uzbekistan National Olympiad, 3

The inscribed circle $\omega$ of the non-isosceles acute-angled triangle $ABC$ touches the side $BC$ at the point $D$. Suppose that $I$ and $O$ are the centres of inscribed circle and circumcircle of triangle $ABC$ respectively. The circumcircle of triangle $ADI$ intersects $AO$ at the points $A$ and $E$. Prove that $AE$ is equal to the radius $r$ of $\omega$.

2015 Indonesia MO Shortlist, G3

Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.

2004 Postal Coaching, 16

Tags: geometry
Find all regular $n$-gons with the following properties: (a) a diagonal is equal to the sum of two other diagonals (b) a diagonal is equal to the sum of a side and another diagonal

2019 Iran Team Selection Test, 2

Tags: geometry
In a triangle $ABC$, $\angle A$ is $60^\circ$. On sides $AB$ and $AC$ we make two equilateral triangles (outside the triangle $ABC$) $ABK$ and $ACL$. $CK$ and $AB$ intersect at $S$ , $AC$ and $BL$ intersect at $R$ , $BL$ and $CK$ intersect at $T$. Prove the radical centre of circumcircle of triangles $BSK, CLR$ and $BTC$ is on the median of vertex $A$ in triangle $ABC$. [i]Proposed by Ali Zamani[/i]

2007 IberoAmerican, 2

Let $ ABC$ be a triangle with incenter $ I$ and let $ \Gamma$ be a circle centered at $ I$, whose radius is greater than the inradius and does not pass through any vertex. Let $ X_{1}$ be the intersection point of $ \Gamma$ and line $ AB$, closer to $ B$; $ X_{2}$, $ X_{3}$ the points of intersection of $ \Gamma$ and line $ BC$, with $ X_{2}$ closer to $ B$; and let $ X_{4}$ be the point of intersection of $ \Gamma$ with line $ CA$ closer to $ C$. Let $ K$ be the intersection point of lines $ X_{1}X_{2}$ and $ X_{3}X_{4}$. Prove that $ AK$ bisects segment $ X_{2}X_{3}$.

2023 Chile TST IMO, 1

Tags: geometry
Let \( \triangle ABC \) be an equilateral triangle, and let \( M \) be the midpoint of \( BC \). Let \( C_1 \) be the circumcircle of triangle \( \triangle ABC \) and \( C_2 \) the circumcircle of triangle \( \triangle ABM \). Determine the ratio between the areas of the circles \( C_1 \) and \( C_2 \).