Found problems: 25757
2010 Contests, 3
In plane,let a circle $(O)$ and two fixed points $B,C$ lies in $(O)$
such that $BC$ not is the diameter.Consider a point $A$ varies in
$(O)$ such that $A\neq B,C$ and $AB\neq AC$.Call $D$ and $E$
respective is intersect of $BC$ and internal and external bisector
of $\widehat{BAC}$,$I$ is midpoint of $DE$.The line that pass through
orthocenter of $\triangle ABC$
and perpendicular with $AI$ intersects $AD,AE$ respective at $M,N$.
1/Prove that $MN$ pass through a fixed point
2/Determint the place of $A$ such that $S_{AMN}$ has maxium value
1972 IMO Longlists, 13
Given a sphere $K$, determine the set of all points $A$ that are vertices of some parallelograms $ABCD$ that satisfy $AC \le BD$ and whose entire diagonal $BD$ is contained in $K$.
2016 Brazil National Olympiad, 6
Lei it \(ABCD\) be a non-cyclical, convex quadrilateral, with no parallel sides.
The lines \(AB\) and \(CD\) meet in \(E\).
Let it \(M \not= E\) be the intersection of circumcircles of \(ADE\) and \(BCE\).
The internal angle bisectors of \(ABCD\) form an convex, cyclical quadrilateral with circumcenter \(I\).
The external angle bisectors of \(ABCD\) form an convex, cyclical quadrilateral with circumcenter \(J\).
Show that \(I,J,M\) are colinear.
2018 JBMO TST-Turkey, 3
Let $H$ be the orthocenter of an acute angled triangle $ABC$. Circumcircle of the triangle $ABC$ and the circle of diameter $[AH]$ intersect at point $E$, different from $A$. Let $M$ be the midpoint of the small arc $BC$ of the circumcircle of the triangle $ABC$ and let $N$ the midpoint of the large arc $BC$ of the circumcircle of the triangle $BHC$ Prove that points $E, H, M, N$ are concyclic.
India EGMO 2021 TST, 5
Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$.
Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.
2022 IOQM India, 5
In parallelogram $ABCD$, the longer side is twice the shorter side. Let $XYZW$ be the quadrilateral formed by the internal bisectors of the angles of $ABCD$. If the area of $XYZW$ is $10$, find the area of $ABCD$
2023 Bulgarian Spring Mathematical Competition, 10.2
An isosceles $\triangle ABC$ has $\angle BAC =\angle ABC =72^{o}$. The angle bisector $AL$ meets the line through $C$ parallel to $AB$ at $D$.
$a)$ Prove that the circumcenter of $\triangle ADC$ lies on $BD$.
$b)$ Prove that $\frac {BE} {BL}$ is irrational.
2010 Tournament Of Towns, 5
The quadrilateral $ABCD$ is inscribed in a circle with center $O$. The diagonals $AC$ and $BD$ do not pass through $O$. If the circumcentre of triangle $AOC$ lies on the line $BD$, prove that the circumcentre of triangle $BOD$ lies on the line $AC$.
2015 Iran Geometry Olympiad, 2
Let $ABC$ be a triangle with $\angle A = 60^o$. The points $M,N,K$ lie on $BC,AC,AB$ respectively such that $BK = KM = MN = NC$. If $AN = 2AK$, find the values of $\angle B$ and $\angle C$.
by Mahdi Etesami Fard
2002 Germany Team Selection Test, 2
Let $A_1$ be the center of the square inscribed in acute triangle $ABC$ with two vertices of the square on side $BC$. Thus one of the two remaining vertices of the square is on side $AB$ and the other is on $AC$. Points $B_1,\ C_1$ are defined in a similar way for inscribed squares with two vertices on sides $AC$ and $AB$, respectively. Prove that lines $AA_1,\ BB_1,\ CC_1$ are concurrent.
2011 Poland - Second Round, 2
The convex quadrilateral $ABCD$ is given, $AB<BC$ and $AD<CD$. $P,Q$ are points on $BC$ and $CD$ respectively such that $PB=AB$ and $QD=AD$. $M$ is midpoint of $PQ$. We assume that $\angle BMD=90^{\circ}$, prove that $ABCD$ is cyclic.
2005 Federal Competition For Advanced Students, Part 1, 4
We're given two congruent, equilateral triangles $ABC$ and $PQR$ with parallel sides, but one has one vertex pointing up and the other one has the vertex pointing down. One is placed above the other so that the area of intersection is a hexagon $A_1A_2A_3A_4A_5A_6$ (labelled counterclockwise). Prove that $A_1A_4$, $A_2A_5$ and $A_3A_6$ are concurrent.
1993 Tournament Of Towns, (385) 3
Three angles of a non-convex, non-self-intersecting quadrilateral are equal to $45$ degrees (i.e. the last equals $225$ degrees). Prove that the midpoints of its sides are vertices of a square.
(V Proizvolov)
KoMaL A Problems 2017/2018, A. 716
Let $ABC$ be a triangle and let $D$ be a point in the interior of the triangle which lies on the angle bisector of $\angle BAC$. Suppose that lines $BD$ and $AC$ meet at $E$, and that lines $CD$ and $AB$ meet at $F$. The circumcircle of $ABC$ intersects line $EF$ at points $P$ and $Q$. Show that if $O$ is the circumcenter of $DPQ$, then $OD$ is perpendicular to $BC$.
[i]Michael Ren[/i]
2012 Portugal MO, 2
In triangle $[ABC]$, the bissector of the angle $\angle{BAC}$ intersects the side $[BC]$ at $D$. Suppose that $\overline{AD}=\overline{CD}$. Find the lengths $\overline{BC}$, $\overline{AC}$ and $\overline{AB}$ that minimize the perimeter of $[ABC]$, given that all the sides of the triangles $[ABC]$ and $[ADC]$ have integer lengths.
2023 Spain Mathematical Olympiad, 6
In an acute scalene triangle $ABC$ with incenter $I$, the line $AI$ intersects the circumcircle again at $D$, and let $J$ be a point such that $D$ is the midpoint of $IJ$. Consider points $E$ and $F$ on line $BC$ such that $IE$ and $JF$ are perpendicular to $AI$. Consider points $G$ on $AE$ and $H$ on $AF$ such that $IG$ and $JH$ are perpendicular to $AE$ and $AF$, respectively. Prove that $BG=CH$.
2012 Kurschak Competition, 1
Let $J_A$ and $J_B$ be the $A$-excenter and $B$-excenter of $\triangle ABC$. Consider a chord $\overline{PQ}$ of circle $ABC$ which is parallel to $AB$ and intersects segments $\overline{AC}$ and $\overline{BC}$. If lines $AB$ and $CP$ intersect at $R$, prove that
$$\angle J_AQJ_B+\angle J_ARJ_B=180^\circ.$$
1988 Bundeswettbewerb Mathematik, 3
Prove that all acute-angled triangles with the equal altitudes $h_c$ and the equal angles $\gamma$ have orthic triangles with same perimeters.
2024 China Team Selection Test, 2
In acute triangle $\triangle {ABC}$, $\angle
A > \angle B > \angle C$. $\triangle {AC_1B}$ and $\triangle {CB_1A}$ are isosceles triangles such that $\triangle {AC_1B} \stackrel{+}{\sim} \triangle {CB_1A}$. Let lines $BB_1, CC_1$ intersects at ${T}$. Prove that if all points mentioned above are distinct, $\angle ATC$ isn't a right angle.
2011 HMNT, 9
Let $P$ and $Q$ be points on line $\ell$ with $PQ = 12$. Two circles, $\omega$ and $\Omega$, are both tangent to $\ell$ at $P$ and are externally tangent to each other. A line through $Q$ intersects $\omega$ at $A$ and $B$, with $A$ closer to $Q$ than $B$, such that $AB = 10$. Similarly, another line through $Q$ intersects $\Omega$ at $C$ and $D$, with $C$ closer to $Q$ than $D$, such that $CD = 7$. Find the ratio $AD/BC$.
2005 Germany Team Selection Test, 3
Let ABC be a triangle and let $r, r_a, r_b, r_c$ denote the inradius and ex-radii opposite to the vertices $A, B, C$, respectively. Suppose that $a>r_a, b>r_b, c>r_c$. Prove that
[b](a)[/b] $\triangle ABC$ is acute.
[b](b)[/b] $a+b+c > r+r_a+r_b+r_c$.
PEN R Problems, 10
Prove that if a lattice triangle has no lattice points on its boundary in addition to its vertices, and one point in its interior, then this interior point is its center of gravity.
2022 Taiwan TST Round 1, C
Let $\triangle P_1P_2P_3$ be an equilateral triangle. For each $n\ge 4$, [i]Mingmingsan[/i] can set $P_n$ as the circumcenter or orthocenter of $\triangle P_{n-3}P_{n-2}P_{n-1}$. Find all positive integer $n$ such that [i]Mingmingsan[/i] has a strategy to make $P_n$ equals to the circumcenter of $\triangle P_1P_2P_3$.
[i]Proposed by Li4 and Untro368.[/i]
2018 Harvard-MIT Mathematics Tournament, 10
Let $ABC$ be a triangle such that $AB=6,BC=5,AC=7.$ Let the tangents to the circumcircle of $ABC$ at $B$ and $C$ meet at $X.$ Let $Z$ be a point on the circumcircle of $ABC.$ Let $Y$ be the foot of the perpendicular from $X$ to $CZ.$ Let $K$ be the intersection of the circumcircle of $BCY$ with line $AB.$ Given that $Y$ is on the interior of segment $CZ$ and $YZ=3CY,$ compute $AK.$
2022-IMOC, G3
Let $\vartriangle ABC$ be an acute triangle. $R$ is a point on arc $BC$. Choose two points $P, Q$ on $AR$ such that $B,P,C,Q$ are concyclic. Let the second intersection of $BP$, $CP$, $BQ$, $CQ$ and the circumcircle of $\vartriangle ABC$ is $P_B$, $P_C$, $Q_B$, $Q_C$, respectively. Let the circumcenter of $\vartriangle P P_BP_C$ and $\vartriangle QQ_BQ_C$ are $O_P$ and $O_Q$, respectively. Prove that $A,O_P,O_Q,R$ are concylic.
[i]proposed by andychang[/i]