This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 Ukraine National Mathematical Olympiad, 9.3

Tags: altitude , geometry
You are given an acute triangle $ABC$ with circumcircle $\omega$. Points $F$ on $AC$, $E$ on $AB$ and $P, Q$ on $\omega$ are chosen so that $\angle AFB = \angle AEC = \angle APE = \angle AQF = 90^\circ$. Show that lines $BC, EF, PQ$ are concurrent or parallel. [i]Proposed by Fedir Yudin[/i]

1990 Mexico National Olympiad, 2

$ABC$ is a triangle with $\angle B = 90^o$ and altitude $BH$. The inradii of $ABC, ABH, CBH$ are $r, r_1, r_2$. Find a relation between them.

2022 All-Russian Olympiad, 8

Tags: geometry
From each vertex of triangle $ABC$ we draw two rays, red and blue, symmetric about the angle bisector of the corresponding angle. The circumcircles of triangles formed by the intersection of rays of the same color. Prove that if the circumcircle of triangle $ABC$ touches one of these circles then it also touches to the other one.

2016 CHMMC (Fall), 4

Tags: geometry
Line segments $m$ and $n$ both have length $2$ and bisect each other at an angle of $60^o$, as shown. A point $X$ is placed at uniform random position along $n$, and a point $Y$ is placed at a uniform random position along $m$. Find the probability that the distance between $X$ and $Y$ is less than $\frac12$.

1991 Arnold's Trivium, 95

Decompose the space of homogeneous polynomials of degree $5$ in $(x, y, z)$ into irreducible subspaces invariant with respect to the rotation group $SO(3)$.

2020 Polish Junior MO First Round, 7.

Consider the right prism with the rhombus with side $a$ and acute angle $60^{\circ}$ as a base. This prism was intersected by some plane intersecting its side edges, such that the cross-section of the prism and the plane is a square. Determine all possible lengths of the side of this square.

2023 Novosibirsk Oral Olympiad in Geometry, 6

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

MMATHS Mathathon Rounds, 2018

[u]Round 1[/u] [b]p1.[/b] Elaine creates a sequence of positive integers $\{s_n\}$. She starts with $s_1 = 2018$. For $n \ge 2$, she sets $s_n =\frac12 s_{n-1}$ if $s_{n-1}$ is even and $s_n = s_{n-1} + 1$ if $s_{n-1}$ is odd. Find the smallest positive integer $n$ such that $s_n = 1$, or submit “$0$” as your answer if no such $n$ exists. [b]p2.[/b] Alice rolls a fair six-sided die with the numbers $1$ through $6$, and Bob rolls a fair eight-sided die with the numbers $1$ through $8$. Alice wins if her number divides Bob’s number, and Bob wins otherwise. What is the probability that Alice wins? [b]p3.[/b] Four circles each of radius $\frac14$ are centered at the points $\left( \pm \frac14, \pm \frac14 \right)$, and ther exists a fifth circle is externally tangent to these four circles. What is the radius of this fifth circle? [u]Round 2 [/u] [b]p4.[/b] If Anna rows at a constant speed, it takes her two hours to row her boat up the river (which flows at a constant rate) to Bob’s house and thirty minutes to row back home. How many minutes would it take Anna to row to Bob’s house if the river were to stop flowing? [b]p5.[/b] Let $a_1 = 2018$, and for $n \ge 2$ define $a_n = 2018^{a_{n-1}}$ . What is the ones digit of $a_{2018}$? [b]p6.[/b] We can write $(x + 35)^n =\sum_{i=0}^n c_ix^i$ for some positive integer $n$ and real numbers $c_i$. If $c_0 = c_2$, what is $n$? [u]Round 3[/u] [b]p7.[/b] How many positive integers are factors of $12!$ but not of $(7!)^2$? [b]p8.[/b] How many ordered pairs $(f(x), g(x))$ of polynomials of degree at least $1$ with integer coefficients satisfy $f(x)g(x) = 50x^6 - 3200$? [b]p9.[/b] On a math test, Alice, Bob, and Carol are each equally likely to receive any integer score between $1$ and $10$ (inclusive). What is the probability that the average of their three scores is an integer? [u]Round 4[/u] [b]p10.[/b] Find the largest positive integer N such that $$(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)$$ is divisible by $N$ for all choices of positive integers $a > b > c > d > e$. [b]p11.[/b] Let $ABCDE$ be a square pyramid with $ABCD$ a square and E the apex of the pyramid. Each side length of $ABCDE$ is $6$. Let $ABCDD'C'B'A'$ be a cube, where $AA'$, $BB'$, $CC'$, $DD'$ are edges of the cube. Andy the ant is on the surface of $EABCDD'C'B'A'$ at the center of triangle $ABE$ (call this point $G$) and wants to crawl on the surface of the cube to $D'$. What is the length the shortest path from $G$ to $D'$? Write your answer in the form $\sqrt{a + b\sqrt3}$, where $a$ and $b$ are positive integers. [b]p12.[/b] A six-digit palindrome is a positive integer between $100, 000$ and $999, 999$ (inclusive) which is the same read forwards and backwards in base ten. How many composite six-digit palindromes are there? PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2784943p24473026]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 Romanian Masters In Mathematics, 3

Given four points $ A_1, A_2, A_3, A_4$ in the plane, no three collinear, such that \[ A_1A_2 \cdot A_3 A_4 \equal{} A_1 A_3 \cdot A_2 A_4 \equal{} A_1 A_4 \cdot A_2 A_3, \] denote by $ O_i$ the circumcenter of $ \triangle A_j A_k A_l$ with $ \{i,j,k,l\} \equal{} \{1,2,3,4\}.$ Assuming $ \forall i A_i \neq O_i ,$ prove that the four lines $ A_iO_i$ are concurrent or parallel. [i]Nikolai Ivanov Beluhov, Bulgaria[/i]

1996 AMC 12/AHSME, 25

Given that $x^2 + y^2 = 14x + 6y + 6$, what is the largest possible value that $3x + 4y$ can have? $\text{(A)}\ 72 \qquad \text{(B)}\ 73 \qquad \text{(C)}\ 74 \qquad \text{(D)}\ 75\qquad \text{(E)}\ 76$

2008 Bosnia And Herzegovina - Regional Olympiad, 1

Given are three pairwise externally tangent circles $ K_{1}$ , $ K_{2}$ and $ K_{3}$. denote by $ P_{1}$ tangent point of $ K_{2}$ and $ K_{3}$ and by $ P_{2}$ tangent point of $ K_{1}$ and $ K_{3}$. Let $ AB$ ($ A$ and $ B$ are different from tangency points) be a diameter of circle $ K_{3}$. Line $ AP_{2}$ intersects circle $ K_{1}$ (for second time) at point $ X$ and line $ BP_{1}$ intersects circle $ K_{2}$(for second time) at $ Y$. If $ Z$ is intersection point of lines $ AP_{1}$ and $ BP_{2}$ prove that points $ X$, $ Y$ and $ Z$ are collinear.

2022 Harvard-MIT Mathematics Tournament, 4

Tags: geometry
Parallel lines $\ell_1$, $\ell_2$, $\ell_3$, $\ell_4$ are evenly spaced in the plane, in that order. Square $ABCD$ has the property that $A$ lies on $\ell_1$ and $C$ lies on $\ell_4$. Let $P$ be a uniformly random point in the interior of $ABCD$ and let $Q$ be a uniformly random point on the perimeter of $ABCD$. Given that the probability that $P$ lies between $\ell_2$ and $\ell_3$ is $\frac{53}{100}$ , the probability that $Q$ lies between $\ell_2$ and $\ell_3$ can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Compute $100a + b$.

2016 EGMO TST Turkey, 4

Tags: geometry , pentagon
In a convex pentagon, let the perpendicular line from a vertex to the opposite side be called an altitude. Prove that if four of the altitudes are concurrent at a point then the fifth altitude also passes through this point.

2015 Math Prize for Girls Olympiad, 2

A tetrahedron $T$ is inside a cube $C$. Prove that the volume of $T$ is at most one-third the volume of $C$.

Estonia Open Senior - geometry, 1995.1.3

We call a tetrahedron a "trirectangular " if it has a vertex (we call this is called a "right-angled" vertex) in which the planes of the three sides of the tetrahedron intersect at right angles. Prove the "three-dimensional Pythagorean theorem": The square of the area of the opposite face of the "right-angled" vertex of the ""trirectangular " tetrahedron is equal to the sum of the squares of the areas of three other sides of the tetrahedron .

2020-21 KVS IOQM India, 24

Two circles $S_1$ and $S_2$, of radii $6$ units and $3$ units respectively, are tangent to each other, externally. Let $AC$ and $BD$ be their direct common tangents with $A$ and $B$ on $S_1$, and $C$ and $D$ on $S_2$. Find the area of quadrilateral $ABDC$ to the nearest Integer.

1989 IMO Longlists, 74

For points $ A_1, \ldots ,A_5$ on the sphere of radius 1, what is the maximum value that $ min_{1 \leq i,j \leq 5} A_iA_j$ can take? Determine all configurations for which this maximum is attained. (Or: determine the diameter of any set $ \{A_1, \ldots ,A_5\}$ for which this maximum is attained.)

2016 Dutch IMO TST, 1

Tags: geometry
Let $\triangle ABC$ be a acute triangle. Let $H$ the foot of the C-altitude in $AB$ such that $AH=3BH$, let $M$ and $N$ the midpoints of $AB$ and $AC$ and let $P$ be a point such that $NP=NC$ and $CP=CB$ and $B$, $P$ are located on different sides of the line $AC$. Prove that $\measuredangle APM=\measuredangle PBA$.

2013 South africa National Olympiad, 6

Let $ABC$ be an acute-angled triangle with $AC \neq BC$, and let $O$ be the circumcentre and $F$ the foot of the altitude through $C$. Furthermore, let $X$ and $Y$ be the feet of the perpendiculars dropped from $A$ and $B$ respectively to (the extension of) $CO$. The line $FO$ intersects the circumcircle of $FXY$ a second time at $P$. Prove that $OP<OF$.

2012 China Team Selection Test, 3

In some squares of a $2012\times 2012$ grid there are some beetles, such that no square contain more than one beetle. At one moment, all the beetles fly off the grid and then land on the grid again, also satisfying the condition that there is at most one beetle standing in each square. The vector from the centre of the square from which a beetle $B$ flies to the centre of the square on which it lands is called the [i]translation vector[/i] of beetle $B$. For all possible starting and ending configurations, find the maximum length of the sum of the [i]translation vectors[/i] of all beetles.

1982 IMO Shortlist, 14

Let $ABCD$ be a convex plane quadrilateral and let $A_1$ denote the circumcenter of $\triangle BCD$. Define $B_1, C_1,D_1$ in a corresponding way. (a) Prove that either all of $A_1,B_1, C_1,D_1$ coincide in one point, or they are all distinct. Assuming the latter case, show that $A_1$, C1 are on opposite sides of the line $B_1D_1$, and similarly,$ B_1,D_1$ are on opposite sides of the line $A_1C_1$. (This establishes the convexity of the quadrilateral $A_1B_1C_1D_1$.) (b) Denote by $A_2$ the circumcenter of $B_1C_1D_1$, and define $B_2, C_2,D_2$ in an analogous way. Show that the quadrilateral $A_2B_2C_2D_2$ is similar to the quadrilateral $ABCD.$

2014 Math Prize For Girls Problems, 10

An ant is on one face of a cube. At every step, the ant walks to one of its four neighboring faces with equal probability. What is the expected (average) number of steps for it to reach the face opposite its starting face?

1957 Moscow Mathematical Olympiad, 351

Given two concentric circles and a pair of parallel lines. Find the locus of the fourth vertices of all rectangles with three vertices on the concentric circles, two vertices on one circle and the third on the other and with sides parallel to the given lines.

1954 Moscow Mathematical Olympiad, 259

A regular star-shaped hexagon is split into $4$ parts. Construct from them a convex polygon. Note: A regular six-pointed star is a figure that is obtained by combining a regular triangle and a triangle symmetrical to it relative to its center

2007 Indonesia TST, 1

Let $ ABCD$ be a cyclic quadrilateral and $ O$ be the intersection of diagonal $ AC$ and $ BD$. The circumcircles of triangle $ ABO$ and the triangle $ CDO$ intersect at $ K$. Let $ L$ be a point such that the triangle $ BLC$ is similar to $ AKD$ (in that order). Prove that if $ BLCK$ is a convex quadrilateral, then it has an incircle.