Found problems: 25757
2016 Federal Competition For Advanced Students, P2, 2
Let $ABC$ be a triangle. Its incircle meets the sides $BC, CA$ and $AB$ in the points $D, E$ and $F$, respectively. Let $P$ denote the intersection point of $ED$ and the line perpendicular to $EF$ and passing through $F$, and similarly let $Q$ denote the intersection point of $EF$ and the line perpendicular to $ED$ and passing through $D$.
Prove that $B$ is the mid-point of the segment $PQ$.
Proposed by Karl Czakler
2003 Tournament Of Towns, 6
An ant crawls on the outer surface of the box in a shape of rectangular parallelepiped. From ant’s point of view, the distance between two points on a surface is defined by the length of the shortest path ant need to crawl to reach one point from the other. Is it true that if ant is at vertex then from ant’s point of view the opposite vertex be the most distant point on the surface?
2015 India PRMO, 9
$9.$ What is the greatest possible perimeter of a right-angled triangle with integer side lengths if one of the sides has length $12 ?$
2022 Turkey Team Selection Test, 3
In a triangle $ABC$, the incircle centered at $I$ is tangent to the sides $BC, AC$ and $AB$ at $D, E$ and $F$, respectively. Let $X, Y$ and $Z$ be the feet of the perpendiculars drawn from $A, B$ and $C$ to a line $\ell$ passing through $I$. Prove that $DX, EY$ and $FZ$ are concurrent.
1965 Kurschak Competition, 3
A pyramid has square base and equal sides. It is cut into two parts by a plane parallel to the base. The lower part (which has square top and square base) is such that the circumcircle of the base is smaller than the circumcircles of the lateral faces. Show that the shortest path on the surface joining the two endpoints of a spatial diagonal lies entirely on the lateral faces.
[img]https://cdn.artofproblemsolving.com/attachments/c/8/170bec826d5e40308cfd7360725d2aba250bf6.png[/img]
2010 Today's Calculation Of Integral, 583
Find the values of $ k$ such that the areas of the three parts bounded by the graph of $ y\equal{}\minus{}x^4\plus{}2x^2$ and the line $ y\equal{}k$ are all equal.
2007 Mexico National Olympiad, 2
Given an equilateral $\triangle ABC$, find the locus of points $P$ such that $\angle APB=\angle BPC$.
1982 IMO Longlists, 11
A rectangular pool table has a hole at each of three of its corners. The lengths of sides of the table are the real numbers $a$ and $b$. A billiard ball is shot from the fourth corner along its angle bisector. The ball falls in one of the holes. What should the relation between $a$ and $b$ be for this to happen?
2016 Romania Team Selection Tests, 4
Let $ABCD$ be a convex quadrilateral, and let $P$, $Q$, $R$, and $S$ be points on the sides $AB$, $BC$, $CD$, and $DA$, respectively. Let the line segment $PR$ and $QS$ meet at $O$. Suppose that each of the quadrilaterals $APOS$, $BQOP$, $CROQ$, and $DSOR$ has an incircle. Prove that the lines $AC$, $PQ$, and $RS$ are either concurrent or parallel to each other.
2008 AIME Problems, 3
A block of cheese in the shape of a rectangular solid measures $ 10$ cm by $ 13$ cm by $ 14$ cm. Ten slices are cut from the cheese. Each slice has a width of $ 1$ cm and is cut parallel to one face of the cheese. The individual slices are not necessarily parallel to each other. What is the maximum possible volume in cubic cm of the remaining block of cheese after ten slices have been cut off?
2014 Taiwan TST Round 1, 3
Let $ABC$ be a triangle with incenter $I$, and suppose the incircle is tangent to $CA$ and $AB$ at $E$ and $F$. Denote by $G$ and $H$ the reflections of $E$ and $F$ over $I$. Let $Q$ be the intersection of $BC$ with $GH$, and let $M$ be the midpoint of $BC$. Prove that $IQ$ and $IM$ are perpendicular.
2019 ITAMO, 1
Let $ABCDEF$ be a hexagon inscribed in a circle such that $AB=BC,$ $CD=DE$ and $EF=AF.$ Prove that segments $AD,$ $BE$ and $CF$ are concurrent$.$
2007 Romania Team Selection Test, 2
Let $ ABC$ be a triangle, let $ E, F$ be the tangency points of the incircle $ \Gamma(I)$ to the sides $ AC$, respectively $ AB$, and let $ M$ be the midpoint of the side $ BC$. Let $ N \equal{} AM \cap EF$, let $ \gamma(M)$ be the circle of diameter $ BC$, and let $ X, Y$ be the other (than $ B, C$) intersection points of $ BI$, respectively $ CI$, with $ \gamma$. Prove that
\[ \frac {NX} {NY} \equal{} \frac {AC} {AB}.
\]
[i]Cosmin Pohoata[/i]
1986 IMO, 2
Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.
2011 AMC 8, 20
Quadrilateral $ABCD$ is a trapezoid, $AD = 15$, $AB = 50$, $BC = 20$, and the altitude is $12$. What is the area of the trapezoid?
[asy]
pair A,B,C,D;
A=(3,20);
B=(35,20);
C=(47,0);
D=(0,0);
draw(A--B--C--D--cycle);
dot((0,0));
dot((3,20));
dot((35,20));
dot((47,0));
label("A",A,N);
label("B",B,N);
label("C",C,S);
label("D",D,S);
draw((19,20)--(19,0));
dot((19,20));
dot((19,0));
draw((19,3)--(22,3)--(22,0));
label("12",(21,10),E);
label("50",(19,22),N);
label("15",(1,10),W);
label("20",(41,12),E);[/asy]
$ \textbf{(A)}600\qquad\textbf{(B)}650\qquad\textbf{(C)}700\qquad\textbf{(D)}750\qquad\textbf{(E)}800 $
2024 Yasinsky Geometry Olympiad, 5
Let \( ABCDEF \) be a cyclic hexagon such that \( AD \parallel EF \). Points \( X \) and \( Y \) are marked on diagonals \( AE \) and \( DF \), respectively, such that \( CX = EX \) and \( BY = FY \). Let \( O \) be the intersection point of \( AE \) and \( FD \), \( P \) the intersection point of \( CX \) and \( BY \), and \( Q \) the intersection point of \( BF \) and \( CE \). Prove that points \( O, P, \) and \( Q \) are collinear.
[i]Proposed by Matthew Kurskyi[/i]
2021 BMT, Tie 2
Let $\vartriangle A_0B_0C_0$ be an equilateral triangle with area $1$, and let $A_1$, $B_1$, $C_1$ be the midpoints of $\overline{A_0B_0}$, $\overline{B_0C_0}$, and $\overline{C_0A_0}$, respectively. Furthermore, set $A_2$, $B_2$, $C_2$ as the midpoints of segments $\overline{A_0A_1}$, $\overline{B_0B_1}$, and $\overline{C_0C_1}$ respectively. For $n \ge 1$, $A_{2n+1}$ is recursively defined as the midpoint of $A_{2n}A_{2n-1}$, and $A_{2n+2}$ is recursively defined as the midpoint of $\overline{A_{2n+1}A_{2n-1}}$. Recursively define $B_n$ and $C_n$ the same way. Compute the value of $\lim_{n \to \infty }[A_nB_nC_n]$, where $[A_nB_nC_n]$ denotes the area of triangle $\vartriangle A_nB_nC_n$.
1992 Baltic Way, 16
All faces of a convex polyhedron are parallelograms. Can the polyhedron have exactly 1992 faces?
2010 Cuba MO, 6
Let $ABC$ be an acute triangle (with $AB \ne AC$) and $M$ be the midpoint of $BC$. The circle of diameter $AM$ cuts $AC$ at $N$ and $BC$ again at $H$. A point $K$ is taken on $AC$ (between $A$ and $N$) such that $CN = NK$. Segments $AH$ and $BK$ intersect at $L$. The circle that passes through $A$,$K$ and $L$ cuts $AB$ at $P$. Prove that $C$,$L$ and $P$ are collinear.
2017 Junior Balkan Team Selection Tests - Romania, 5
Given an acute triangle ${ABC}$, erect triangles ${ABD}$ and ${ACE}$ externally, so that ${\angle ADB= \angle AEC=90^o}$ and ${\angle BAD= \angle CAE}$. Let ${{A}_{1}}\in BC,{{B}_{1}}\in AC$ and ${{C}_{1}}\in AB$ be the feet of the altitudes of the triangle ${ABC}$, and let $K$ and ${K,L}$ be the midpoints of $[ B{{C}_{1}} ]$ and ${BC_1, CB_1}$, respectively. Prove that the circumcenters of the triangles $AKL,{{A}_{1}}{{B}_{1}}{{C}_{1}}$ and ${DEA_1}$ are collinear.
(Bulgaria)
2023 Polish Junior MO Second Round, 1.
On the sides $AB$ and $BC$ of triangle $ABC$, there are points $D$ and $E$, respectively, such that \[\angle ADC=\angle BDE\quad\text{and}\quad \angle BCD=\angle AED.\] Prove that $AE=BE$.
2019 Romanian Master of Mathematics Shortlist, G4 ver.II
Let $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. A point $D$ is chosen on the internal bisector of $\angle ACB$ so that the points $D$ and $C$ are separated by $AB$. A circle $\omega$ centered at $D$ is tangent to the segment $AB$ at $E$. The tangents to $\omega$ through $C$ meet the segment $AB$ at $K$ and $L$, where $K$ lies on the segment $AL$. A circle $\Omega_1$ is tangent to the segments $AL, CL$, and also to $\Omega$ at point $M$. Similarly, a circle $\Omega_2$ is tangent to the segments $BK, CK$, and also to $\Omega$ at point $N$. The lines $LM$ and $KN$ meet at $P$. Prove that $\angle KCE = \angle LCP$.
Poland
2022 Kazakhstan National Olympiad, 4
$P$ and $Q$ are points on angle bisectors of two adjacent angles. Let $PA$, $PB$, $QC$ and $QD$ be altitudes on the sides of these adjacent angles. Prove that lines $AB$, $CD$ and $PQ$ are concurrent.
2012 Regional Olympiad of Mexico Center Zone, 4
On an acute triangle $ABC$ we draw the internal bisector of $<ABC$, $BE$, and the altitude $AD$, ($D$ on $BC$), show that $<CDE$ it's bigger than 45 degrees.
2004 Harvard-MIT Mathematics Tournament, 4
$P$ is inside rectangle $ABCD$. $PA = 2$, $PB = 3$, and $PC = 10$. Find $PD$.