Found problems: 25757
2012 BAMO, 4
Given a segment $AB$ in the plane, choose on it a point $M$ different from $A$ and $B$. Two equilateral triangles $\triangle AMC$ and $\triangle BMD$ in the plane are constructed on the same side of segment $AB$. The circumcircles of the two triangles intersect in point $M$ and another point $N$. (The [b]circumcircle[/b] of a triangle is the circle that passes through all three of its vertices.)
(a) Prove that lines $AD$ and $BC$ pass through point $N$.
(b) Prove that no matter where one chooses the point $M$ along segment $AB$, all lines $MN$ will pass through some fixed point $K$ in the plane.
1998 Portugal MO, 5
Let $F$ be the midpoint of circle arc $AB$, and let $M$ be a point on the arc such that $AM <MB$. The perpendicular drawn from point $F$ on $AM$ intersects $AM$ at point $T$. Show that $T$ bisects the broken line $AMB$, that is $AT =TM+MB$.
KöMaL Gy. 2404. (March 1987), Archimedes of Syracuse
2017 AMC 10, 17
Distinct points $P$, $Q$, $R$, $S$ lie on the circle $x^2+y^2=25$ and have integer coordinates. The distances $PQ$ and $RS$ are irrational numbers. What is the greatest possible value of the ratio $\frac{PQ}{RS }$?
$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 3\sqrt{5}\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 5\sqrt{2}$
1965 Polish MO Finals, 1
Prove the theorem:
the lengths $ a$, $ b $, $ c $ of the sides of a triangle and the arc measures $ \alpha $, $ \beta $, $ \gamma $of its opposite angles satisfy the inequalities $$\frac{\pi}{3}\leq \frac{a \alpha + b \beta +c \gamma}{a+b+c}<\frac{\pi }{ 2}.$$
2021 Iranian Geometry Olympiad, 1
Acute-angled triangle $ABC$ with circumcircle $\omega$ is given. Let $D$ be the midpoint of $AC$, $E$ be the foot of altitude from $A$ to $BC$, and $F$ be the intersection point of $AB$ and $DE$. Point $H$ lies on the arc $BC$ of $\omega$ (the one that does not contain $A$) such that $\angle BHE=\angle ABC$. Prove that $\angle BHF=90^\circ$.
2009 Postal Coaching, 4
Determine the least real number $a > 1$ such that for any point $P$ in the interior of a square $ABCD$, the ratio of the areas of some two triangle $PAB, PBC, PCD, PDA$ lies in the interval $[1/a, a]$.
1967 Leningrad Math Olympiad, grade 8
[b]8.1[/b] $x$ and $y$ are the roots of the equation $t^2-ct-c=0$. Prove that holds the inequality $x^3 + y^3 + (xy)^3 \ge 0.$
[b]8.2.[/b] Two circles touch internally at point $A$ . Through a point $B$ of the inner circle, different from $A$, a tangent to this circle intersecting the outer circle at points C and $D$. Prove that $AB$ is a bisector of angle $CAD$.
[img]https://cdn.artofproblemsolving.com/attachments/2/8/3bab4b5c57639f24a6fd737f2386a5e05e6bc7.png[/img]
[b]8.3[/b] Prove that $2^{3^{100}} + 1$ is divisible by $3^{101}$.
[b]8.4 / 7.5[/b] An entire arc of circle is drawn through the vertices $A$ and $C$ of the rectangle $ABCD$ lying inside the rectangle. Draw a line parallel to $AB$ intersecting $BC$ at point $P$, $AD$ at point $Q$, and the arc $AC$ at point $R$ so that the sum of the areas of the figures $AQR$ and $CPR$ is the smallest.
[img]https://cdn.artofproblemsolving.com/attachments/1/4/9b5a594f82a96d7eff750e15ca6801a5fc0bf1.png
[/img]
[b]8.5[/b] In a certain group of people, everyone has one enemy and one Friend. Prove that these people can be divided into two companies so that in every company there will be neither enemies nor friends.
[b]8.6[/b] Numbers $a_1, a_2, . . . , a_{100}$ are such that
$$a_1 - 2a_2 + a_3 \le 0$$
$$a_2-2a_3 + a_ 4 \le 0$$
$$...$$
$$a_{98}-2a_{99 }+ a_{100} \le 0$$
and at the same time $a_1 = a_{100}\ge 0$. Prove that all these numbers are non-negative.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988083_1967_leningrad_math_olympiad]here[/url].
1952 Moscow Mathematical Olympiad, 217
Given three skew lines. Prove that they are pair-wise perpendicular to their pair-wise perpendiculars.
2019 CMIMC, 4
Suppose $\mathcal{T}=A_0A_1A_2A_3$ is a tetrahedron with $\angle A_1A_0A_3 = \angle A_2A_0A_1 = \angle A_3A_0A_2 = 90^\circ$, $A_0A_1=5, A_0A_2=12$ and $A_0A_3=9$. A cube $A_0B_0C_0D_0E_0F_0G_0H_0$ with side length $s$ is inscribed inside $\mathcal{T}$ with $B_0\in \overline{A_0A_1}, D_0 \in \overline{A_0A_2}, E_0 \in \overline{A_0A_3}$, and $G_0\in \triangle A_1A_2A_3$; what is $s$?
2023 Regional Olympiad of Mexico West, 6
There are $2023$ guinea pigs placed in a circle, from which everyone except one of them, call it $M$, has a mirror that points towards one of the $2022$ other guinea pigs. $M$ has a lantern that will shoot a light beam towards one of the guinea pigs with a mirror and will reflect to the guinea pig that the mirror is pointing and will keep reflecting with every mirror it reaches. Isaías will re-direct some of the mirrors to point to some other of the $2023$ guinea pigs. In the worst case scenario, what is the least number of mirrors that need to be re-directed, such that the light beam hits $M$ no matter the starting point of the light beam?
2007 Today's Calculation Of Integral, 189
Let $n$ be positive integers. Denote the graph of $y=\sqrt{x}$ by $C,$ and the line passing through two points $(n,\ \sqrt{n})$ and $(n+1,\ \sqrt{n+1})$ by $l.$ Let $V$ be the volume of the solid obtained by revolving the region bounded by $C$ and $l$ around the $x$ axis.Find the positive numbers $a,\ b$ such that $\lim_{n\to\infty}n^{a}V=b.$
1965 Czech and Slovak Olympiad III A, 2
Line segment $AM=d>0$ is given in the plane. Furthermore, a positive number $v$ is given. Construct a right triangle $ABC$ with hypotenuse $AB$, altitude to the hypotenuse of the length $v$ and the leg $BC$ being divided by $M$ in ration $MB/MC=2/3$. Discuss conditions of solvability in terms of $d, v$.
2024 All-Russian Olympiad, 4
A quadrilateral $ABCD$ without parallel sides is inscribed in a circle $\omega$. We draw a line $\ell_a \parallel BC$ through the point $A$, a line $\ell_b \parallel CD$ through the point $B$, a line $\ell_c \parallel DA$ through the point $C$, and a line $\ell_d \parallel AB$ through the point $D$. Suppose that the quadrilateral whose successive sides lie on these four straight lines is inscribed in a circle $\gamma$ and that $\omega$ and $\gamma$ intersect in points $E$ and $F$. Show that the lines $AC, BD$ and $EF$ intersect in one point.
[i]Proposed by A. Kuznetsov[/i]
2019 Korea Winter Program Practice Test, 1
Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that if $a,b,c$ are the length sides of a triangle, and $r$ is the radius of its incircle, then $f(a),f(b),f(c)$ also form a triangle where its radius of the incircle is $f(r)$.
2025 China Team Selection Test, 21
Given a circle \( \omega \) and two points \( A \) and \( B \) outside \( \omega \), a quadrilateral \( PQRS \) is defined as[i] "good"[/i] if \( P, Q, R, S \) are four distinct points on \( \omega \) in order, and lines \( PQ \) and \( RS \) intersect at \( A \) and lines \( PS \) and \( QR \) intersect at \( B \).
For a quadrilateral \( T \), let \( S_T \) denote its area. If there exists a [i]good[/i] quadrilateral, prove that there exists [i]good[/i] quadrilateral \( T \) such that for any good quadrilateral $T_1 (T_1 \neq T)$, \( S_{T_1} < S_T \).
2009 Indonesia TST, 2
Given a triangle $ \,ABC,\,$ let $ \,I\,$ be the center of its inscribed circle. The internal bisectors of the angles $ \,A,B,C\,$ meet the opposite sides in $ \,A^{\prime },B^{\prime },C^{\prime }\,$ respectively. Prove that
\[ \frac {1}{4} < \frac {AI\cdot BI\cdot CI}{AA^{\prime }\cdot BB^{\prime }\cdot CC^{\prime }} \leq \frac {8}{27}.
\]
2022 BMT, 10
In triangle $\vartriangle ABC$, $E$ and $F$ are the feet of the altitudes from $B$ to $\overline{AC}$ and $C$ to $\overline{AB}$, respectively. Line $\overleftrightarrow{BC}$ and the line through $A$ tangent to the circumcircle of $ABC$ intersect at $X$. Let $Y$ be the intersection of line $\overleftrightarrow{EF}$ and the line through $A$ parallel to $\overline{BC}$. If $XB = 4$, $BC = 8$, and $EF = 4\sqrt3$, compute $XY$.
1981 AMC 12/AHSME, 2
Point $E$ is on side $AB$ of square $ABCD$. If $EB$ has length one and $EC$ has length two, then the area of the square is
$\text{(A)}\ \sqrt{3} \qquad \text{(B)}\ \sqrt{5} \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 2\sqrt{3} \qquad \text{(E)}\ 5$
2007 District Olympiad, 2
All $ 2n\ge 2 $ squares of a $ 2\times n $ rectangle are colored with three colors. We say that a color has a [i]cut[/i] if there is some column (from all $ n $) that has both squares colored with it. Determine:
[b]a)[/b] the number of colorings that have no cuts.
[b]b)[/b] the number of colorings that have a single cut.
2004 JBMO Shortlist, 5
Let $ABC$ be an isosceles triangle with $AC=BC$, let $M$ be the midpoint of its side $AC$, and let $Z$ be the line through $C$ perpendicular to $AB$. The circle through the points $B$, $C$, and $M$ intersects the line $Z$ at the points $C$ and $Q$. Find the radius of the circumcircle of the triangle $ABC$ in terms of $m = CQ$.
1994 Portugal MO, 2
Consider in a square $[ABCD]$ a point $E$ on the side $AB$, different from $A$ and $B$. On the side $BC$ consider the point $F$ such that $\angle AED = \angle DEF$ . Prove that $EF = AE + FC$.
2003 Rioplatense Mathematical Olympiad, Level 3, 3
An $8\times 8$ chessboard is to be tiled (i.e., completely covered without overlapping) with pieces of the following shapes:
[asy]
unitsize(.6cm);
draw(unitsquare,linewidth(1));
draw(shift(1,0)*unitsquare,linewidth(1));
draw(shift(2,0)*unitsquare,linewidth(1));
label("\footnotesize $1\times 3$ rectangle",(1.5,0),S);
draw(shift(8,1)*unitsquare,linewidth(1));
draw(shift(9,1)*unitsquare,linewidth(1));
draw(shift(10,1)*unitsquare,linewidth(1));
draw(shift(9,0)*unitsquare,linewidth(1));
label("\footnotesize T-shaped tetromino",(9.5,0),S);
[/asy] The $1\times 3$ rectangle covers exactly three squares of the chessboard, and the T-shaped tetromino covers exactly four squares of the chessboard. [list](a) What is the maximum number of pieces that can be used?
(b) How many ways are there to tile the chessboard using this maximum number of pieces?[/list]
2003 Federal Math Competition of S&M, Problem 3
Given a circle $k$ and the point $P$ outside it, an arbitrary line $s$ passing through $P$ intersects $k$ at the points $A$ and $B$ . Let $M$ and $N$ be the midpoints of the arcs determined by the points $A$ and $B$ and let $C$ be the point on $AB$ such that $PC^2=PA\cdot PB$ . Prove that $\angle MCN$ doesn't depend on the choice of $s$.
[color=red][Moderator edit: This problem has also been discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=56295 .][/color]
2006 Purple Comet Problems, 10
An equilateral triangle with side length $6$ has a square of side length $6$ attached to each of its edges as shown. The distance between the two farthest vertices of this figure (marked $A$ and $B$ in the figure) can be written as $m + \sqrt{n}$ where $m$ and $n$ are positive integers. Find $m + n$.
[asy]
draw((0,0)--(1,0)--(1/2,sqrt(3)/2)--cycle);
draw((1,0)--(1+sqrt(3)/2,1/2)--(1/2+sqrt(3)/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
draw((0,0)--(-sqrt(3)/2,1/2)--(-sqrt(3)/2+1/2,1/2+sqrt(3)/2)--(1/2,sqrt(3)/2));
dot((-sqrt(3)/2+1/2,1/2+sqrt(3)/2));
label("A", (-sqrt(3)/2+1/2,1/2+sqrt(3)/2), N);
draw((1,0)--(1,-1)--(0,-1)--(0,0));
dot((1,-1));
label("B", (1,-1), SE);
[/asy]
2001 Paraguay Mathematical Olympiad, 4
In a parallelogram $ABCD$ of surface area $60$ cm$^2$ , a line is drawn by $D$ that intersects $BC$ at $P$ and the extension of $AB$ at $Q$. If the area of the quadrilateral $ABPD$ is $46$ cm$^2$ , find the area of triangle $CPQ$.