This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 Iran MO (3rd Round), 3

Prove that if $n$ is large enough, among any $n$ points of plane we can find $1000$ points such that these $1000$ points have pairwise distinct distances. Can you prove the assertion for $n^{\alpha}$ where $\alpha$ is a positive real number instead of $1000$?

2005 USAMTS Problems, 1

Tags: ratio , geometry
$\overline{AB}$ is a diameter of circle $C_1$. Point $P$ is on $C_1$ such that $AP>BP$. Circle $C_2$ is centered at $P$ with radius $PB$. The extension of $\overline{AP}$ past $P$ meets $C_2$ at $Q$. Circle $C_3$ is centered at $A$ and is externally tangent to $C_2$. Circle $C_4$ passes through $A$, $Q$, and $R$. Find, with proof, the ratio between the area of $C_4$ and the area of $C_1$, and show that this ratio is the same for all points $P$ on $C_1$ such that $AP>BP$.

1949 Moscow Mathematical Olympiad, 172

Two squares are said to be [i]juxtaposed [/i] if their intersection is a point or a segment. Prove that it is impossible to [i]juxtapose [/i] to a square more than eight non-overlapping squares of the same size.

1985 IMO Longlists, 85

Tags: geometry
Let $CD$ be a diameter of circle $K$. Let $AB$ be a chord that is parallel to $CD$. The line segment $AE$, with $E$ on $K$, is parallel to $CB$; $F$ is the point of intersection of line segments $AB$ and $DE$. The line segment $FG$, with $G$ on $DC$, extended is parallel to $CB$. Is $GA$ tangent to $K$ at point $A \?$

2020 AMC 12/AHSME, 12

Tags: geometry
Let $\overline{AB}$ be a diameter in a circle of radius $5\sqrt2.$ Let $\overline{CD}$ be a chord in the circle that intersects $\overline{AB}$ at a point $E$ such that $BE=2\sqrt5$ and $\angle AEC = 45^{\circ}.$ What is $CE^2+DE^2?$ $\textbf{(A)}\ 96 \qquad\textbf{(B)}\ 98 \qquad\textbf{(C)}\ 44\sqrt5 \qquad\textbf{(D)}\ 70\sqrt2 \qquad\textbf{(E)}\ 100$

2016 Sharygin Geometry Olympiad, 7

From the altitudes of an acute-angled triangle, a triangle can be composed. Prove that a triangle can be composed from the bisectors of this triangle.

1967 IMO Shortlist, 4

Let $k_1$ and $k_2$ be two circles with centers $O_1$ and $O_2$ and equal radius $r$ such that $O_1O_2 = r$. Let $A$ and $B$ be two points lying on the circle $k_1$ and being symmetric to each other with respect to the line $O_1O_2$. Let $P$ be an arbitrary point on $k_2$. Prove that \[PA^2 + PB^2 \geq 2r^2.\]

2003 Romania National Olympiad, 1

Find the locus of the points $ M $ that are situated on the plane where a rhombus $ ABCD $ lies, and satisfy: $$ MA\cdot MC+MB\cdot MD=AB^2 $$ [i]Ovidiu Pop[/i]

2021 Macedonian Balkan MO TST, Problem 4

Viktor and Natalia play a colouring game with a 3-dimensional cube taking turns alternatingly. Viktor goes first, and on each of his turns, he selects an unpainted edge, and paints it violet. On each of Natalia's turns, she selects an unpainted edge, or at most once during the game a face diagonal, and paints it neon green. If the player on turn cannot make a legal move, then the turn switches to the other player. The game ends when nobody can make any more legal moves. Natalia wins if at the end of the game every vertex of the cube can be reached from every other vertex by traveling only along neon green segments (edges or diagonal), otherwise Viktor wins. Who has a winning strategy? (Prove your answer.) [i]Authored by Viktor Simjanoski[/i]

2023 Purple Comet Problems, 3

Tags: geometry
Mike has two similar pentagons. The first pentagon has a perimeter of $18$ and an area of $8 \frac{7}{16}$ . The second pentagon has a perimeter of $24$. Find the area of the second pentagon.

2020 Regional Olympiad of Mexico Northeast, 2

Let $A$, $B$, $C$ and $D$ be points on the same circumference with $\angle BCD=90^\circ$. Let $P$ and $Q$ be the projections of $A$ onto $BD$ and $CD$, respectively. Prove that $PQ$ cuts the segment $AC$ into equal parts.

1983 Bulgaria National Olympiad, Problem 4

Tags: circles , square , geometry
Find the smallest possible side of a square in which five circles of radius $1$ can be placed, so that no two of them have a common interior point.

2020 CHMMC Winter (2020-21), 14

Tags: algebra , geometry
Let $a$ be a positive real number. Collinear points $Z_1, Z_2, Z_3, Z_4$ (in that order) are plotted on the $(x, y)$ Cartesian plane. Suppose that the graph of the equation \[ x^2 + (y+a)^2 + x^2 + (y-a)^2 = 4a^2 + \sqrt{(x^2 + (y+a)^2)(x^2 + (y-a)^2)} \] passes through points $Z_1$ and $Z_4$, and the graph of the equation \[ x^2 + (y+a)^2 + x^2 + (y-a)^2 = 4a^2 - \sqrt{(x^2 + (y+a)^2)(x^2 + (y-a)^2)} \] passes through points $Z_2$ and $Z_3$. If $Z_1Z_2 = 5$, $Z_2Z_3 = 1$, and $Z_3Z_4 = 3$, then $a^2$ can be written as $\frac{m + n\sqrt{p}}{q}$, where $m$, $n$, $p$, and $q$ are positive integers, $m$, $n$, and $q$ are relatively prime, and $p$ is squarefree. Find $m + n + p + q$.

2001 Greece JBMO TST, 2

Tags: geometry , area
Let $ABCD$ be a quadrilateral with $\angle DAB=60^o$, $\angle ABC=60^o$ and $\angle BCD=120^o$. Diagonals $AC$, $BD$ intersect at point $M$ and $BM=a, MD=2a$. Let $O$ be the midpoint of side $AC$ and draw $OH \perp BD, H \in BD$ and $MN\perp OB, N \in OB$. Prove that i) $HM=MN=\frac{a}{2}$ ii) $AD=DC$ iii) $S_{ABCD}=\frac{9a^2}{2}$

Champions Tournament Seniors - geometry, 2011.4

The height $SO$ of a regular quadrangular pyramid $SABCD$ forms an angle $60^o$ with a side edge , the volume of this pyramid is equal to $18$ cm$^3$ . The vertex of the second regular quadrangular pyramid is at point $S$, the center of the base is at point $C$, and one of the vertices of the base lies on the line $SO$. Find the volume of the common part of these pyramids. (The common part of the pyramids is the set of all such points in space that lie inside or on the surface of both pyramids).

2012 HMNT, 3

Tags: geometry
$ABCD$ is a rectangle with $AB = 20$ and $BC = 3$. A circle with radius $5$, centered at the midpoint of $DC$, meets the rectangle at four points: $W, X, Y$ , and $Z$. Find the area of quadrilateral $WXY Z$.

1986 Tournament Of Towns, (126) 1

We are given trapezoid $ABCD$ and point $M$ on the intersection of its diagonals. The parallel sides are $AD$ and $BC$ and it is known that $AB$ is perpendicular to $AD$ and that the trapezoid can have an inscribed circle. If the radius of this inscribed circle is $R$ find the area of triangle $DCM$ .

2011 Tokio University Entry Examination, 3

Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$. (1) Find $u(t),\ v(t)$. (2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$. (3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$. [i]2011 Tokyo University entrance exam/Science, Problem 3[/i]

2018 Regional Olympiad of Mexico Center Zone, 2

Let $\vartriangle ABC$be a triangle and let $\Gamma$ its circumscribed circle. Let $M$ be the midpoint of the side $BC$ and let $D$ be the point of intersection of the line $AM$ with $\Gamma$. By $D$ a straight line is drawn parallel to $BC$, which intersects $\Gamma$ at a point $E$. Let $N$ be the midpoint of the segment $AE$ and let $P$ be the point of intersection of $CN$ with $AM$. Show that $AP = PC$.

2009 Germany Team Selection Test, 1

Tags: geometry
Let $ I$ be the incircle centre of triangle $ ABC$ and $ \omega$ be a circle within the same triangle with centre $ I.$ The perpendicular rays from $ I$ on the sides $ \overline{BC}, \overline{CA}$ and $ \overline{AB}$ meets $ \omega$ in $ A', B'$ and $ C'.$ Show that the three lines $ AA', BB'$ and $ CC'$ have a common point.

2005 Bulgaria Team Selection Test, 1

Let $ABC$ be an acute triangle. Find the locus of the points $M$, in the interior of $\bigtriangleup ABC$, such that $AB-FG= \frac{MF.AG+MG.BF}{CM}$, where $F$ and $G$ are the feet of the perpendiculars from $M$ to the lines $BC$ and $AC$, respectively.

2013 International Zhautykov Olympiad, 2

Tags: geometry , hexagon
Given convex hexagon $ABCDEF$ with $AB \parallel DE$, $BC \parallel EF$, and $CD \parallel FA$ . The distance between the lines $AB$ and $DE$ is equal to the distance between the lines $BC$ and $EF$ and to the distance between the lines $CD$ and $FA$. Prove that the sum $AD+BE+CF$ does not exceed the perimeter of hexagon $ABCDEF$.

2024 USAJMO, 6

Tags: geometry
Point $D$ is selected inside acute $\triangle ABC$ so that $\angle DAC = \angle ACB$ and $\angle BDC = 90^{\circ} + \angle BAC$. Point $E$ is chosen on ray $BD$ so that $AE = EC$. Let $M$ be the midpoint of $BC$. Show that line $AB$ is tangent to the circumcircle of triangle $BEM$. [i]Proposed by Anton Trygub[/i]

2014 International Zhautykov Olympiad, 1

Points $M$, $N$, $K$ lie on the sides $BC$, $CA$, $AB$ of a triangle $ABC$, respectively, and are different from its vertices. The triangle $MNK$ is called[i] beautiful[/i] if $\angle BAC=\angle KMN$ and $\angle ABC=\angle KNM$. If in the triangle $ABC$ there are two beautiful triangles with a common vertex, prove that the triangle $ABC$ is right-angled. [i]Proposed by Nairi M. Sedrakyan, Armenia[/i]

2014 Contests, 3

(i) $ABC$ is a triangle with a right angle at $A$, and $P$ is a point on the hypotenuse $BC$. The line $AP$ produced beyond $P$ meets the line through $B$ which is perpendicular to $BC$ at $U$. Prove that $BU = BA$ if, and only if, $CP = CA$. (ii) $A$ is a point on the semicircle $CB$, and points $X$ and $Y$ are on the line segment $BC$. The line $AX$, produced beyond $X$, meets the line through $B$ which is perpendicular to $BC$ at $U$. Also the line $AY$, produced beyond $Y$, meets the line through $C$ which is perpendicular to $BC$ at $V$. Given that $BY = BA$ and $CX = CA$, determine the angle $\angle VAU$.