This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

ABMC Online Contests, 2019 Oct

[b]p1.[/b] Fluffy the Dog is an extremely fluffy dog. Because of his extreme fluffiness, children always love petting Fluffy anywhere. Given that Fluffy likes being petted $1/4$ of the time, out of $120$ random people who each pet Fluffy once, what is the expected number of times Fluffy will enjoy being petted? [b]p2.[/b] Andy thinks of four numbers $27$, $81$, $36$, and $41$ and whispers the numbers to his classmate Cynthia. For each number she hears, Cynthia writes down every factor of that number on the whiteboard. What is the sum of all the different numbers that are on the whiteboard? (Don't include the same number in your sum more than once) [b]p3.[/b] Charles wants to increase the area his square garden in his backyard. He increases the length of his garden by $2$ and increases the width of his garden by $3$. If the new area of his garden is $182$, then what was the original area of his garden? [b]p4.[/b] Antonio is trying to arrange his flute ensemble into an array. However, when he arranges his players into rows of $6$, there are $2$ flute players left over. When he arranges his players into rows of $13$, there are $10$ flute players left over. What is the smallest possible number of flute players in his ensemble such that this number has three prime factors? [b]p5.[/b] On the AMC $9$ (Acton Math Competition $9$), $5$ points are given for a correct answer, $2$ points are given for a blank answer and $0$ points are given for an incorrect answer. How many possible scores are there on the AMC $9$, a $15$ problem contest? [b]p6.[/b] Charlie Puth produced three albums this year in the form of CD's. One CD was circular, the second CD was in the shape of a square, and the final one was in the shape of a regular hexagon. When his producer circumscribed a circle around each shape, he noticed that each time, the circumscribed circle had a radius of $10$. The total area occupied by $1$ of each of the different types of CDs can be expressed in the form $a + b\pi + c\sqrt{d}$ where $d$ is not divisible by the square of any prime. Find $a + b + c + d$. [b]p7.[/b] You are picking blueberries and strawberries to bring home. Each bushel of blueberries earns you $10$ dollars and each bushel of strawberries earns you $8$ dollars. However your cart can only fit $24$ bushels total and has a weight limit of $100$ lbs. If a bushel of blueberries weighs $8$ lbs and each bushel of strawberries weighs $6$ lbs, what is your maximum profit. (You can only pick an integer number of bushels) [b]p8.[/b] The number $$\sqrt{2218 + 144\sqrt{35} + 176\sqrt{55} + 198\sqrt{77}}$$ can be expressed in the form $a\sqrt5 + b\sqrt7 + c\sqrt{11}$ for positive integers $a, b, c$. Find $abc$. [b]p9.[/b] Let $(x, y)$ be a point such that no circle passes through the three points $(9,15)$, $(12, 20)$, $(x, y)$, and no circle passes through the points $(0, 17)$, $(16, 19)$, $(x, y)$. Given that $x - y = -\frac{p}{q}$ for relatively prime positive integers $p$, $q$, Find $p + q$. [b]p10.[/b] How many ways can Alfred, Betty, Catherine, David, Emily and Fred sit around a $6$ person table if no more than three consecutive people can be in alphabetical order (clockwise)? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 Harvard-MIT Mathematics Tournament, 2

A rectangle has sides of length $\sin x$ and $\cos x$ for some $x$. What is the largest possible area of such a rectangle?

1987 AMC 12/AHSME, 18

Tags: geometry
It takes $A$ algebra books (all the same thickness) and $H$ geometry books (all the same thickness, which is greater than that of an algebra book) to completely fill a certain shelf. Also, $S$ of the algebra books and $M$ of the geometry books would fill the same shelf. Finally, $E$ of the algebra books alone would fill this shelf. Given that $A, H, S, M, E$ are distinct positive integers, it follows that $E$ is $ \textbf{(A)}\ \frac{AM+SH}{M+H} \qquad\textbf{(B)}\ \frac{AM^2+SH^2}{M^2+H^2} \qquad\textbf{(C)}\ \frac{AH-SM}{M-H} \qquad\textbf{(D)}\ \frac{AM-SH}{M-H} \qquad\textbf{(E)}\ \frac{AM^2-SH^2}{M^2-H^2} $

2017 India National Olympiad, 6

Let $n\ge 1$ be an integer and consider the sum $$x=\sum_{k\ge 0} \dbinom{n}{2k} 2^{n-2k}3^k=\dbinom{n}{0}2^n+\dbinom{n}{2}2^{n-2}\cdot{}3+\dbinom{n}{4}2^{n-k}\cdot{}3^2 + \cdots{}.$$ Show that $2x-1,2x,2x+1$ form the sides of a triangle whose area and inradius are also integers.

2009 Italy TST, 2

$ABC$ is a triangle in the plane. Find the locus of point $P$ for which $PA,PB,PC$ form a triangle whose area is equal to one third of the area of triangle $ABC$.

2013 BMT Spring, 4

Tags: geometry
Two cubes $A$ and $B$ have different side lengths, such that the volume of cube $A$ is numerically equal to the surface area of cube $B$. If the surface area of cube $A$ is numerically equal to six times the side length of cube $B$, what is the ratio of the surface area of cube $A$ to the volume of cube $B$?

2018 CCA Math Bonanza, T8

A rectangular prism with positive integer side lengths formed by stacking unit cubes is called [i]bipartisan[/i] if the same number of unit cubes can be seen on the surface as those which cannot be seen on the surface. How many non-congruent bipartisan rectangular prisms are there? [i]2018 CCA Math Bonanza Team Round #8[/i]

2018 EGMO, 5

Let $\Gamma $ be the circumcircle of triangle $ABC$. A circle $\Omega$ is tangent to the line segment $AB$ and is tangent to $\Gamma$ at a point lying on the same side of the line $AB$ as $C$. The angle bisector of $\angle BCA$ intersects $\Omega$ at two different points $P$ and $Q$. Prove that $\angle ABP = \angle QBC$.

1983 IMO, 2

Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.

2008 Spain Mathematical Olympiad, 3

Every point in the plane is coloured one of seven distinct colours. Is there an inscribed trapezoid whose vertices are all of the same colour?

Geometry Mathley 2011-12, 1.2

Let $ABC$ be an acute triangle with its altitudes $BE,CF$. $M$ is the midpoint of $BC$. $N$ is the intersection of $AM$ and $EF. X$ is the projection of $N$ on $BC$. $Y,Z$ are respectively the projections of $X$ onto $AB,AC$. Prove that $N$ is the orthocenter of triangle $AYZ$. Nguyễn Minh Hà

2016 Azerbaijan JBMO TST, 2

Tags: geometry
Let $ABCD$ be a quadrilateral ,circumscribed about a circle. Let $M$ be a point on the side $AB$. Let $I_{1}$,$I_{2}$ and $I_{3}$ be the incentres of triangles $AMD$, $CMD$ and $BMC$ respectively. Prove that $I_{1}I_{2}I_{3}M$ is circumscribed.

2014 IMO, 6

A set of lines in the plane is in [i]general position[/i] if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its [i]finite regions[/i]. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ lines blue in such a way that none of its finite regions has a completely blue boundary. [i]Note[/i]: Results with $\sqrt{n}$ replaced by $c\sqrt{n}$ will be awarded points depending on the value of the constant $c$.

1997 All-Russian Olympiad, 2

Tags: geometry
A circle centered at $O$ and inscribed in triangle $ABC$ meets sides $AC$;$AB$;$BC$ at $K$;$M$;$N$, respectively. The median $BB_1$ of the triangle meets $MN$ at $D$. Show that $O$;$D$;$K$ are collinear. [i]M. Sonkin[/i]

2014 Online Math Open Problems, 23

Let $\Gamma_1$ and $\Gamma_2$ be circles in the plane with centers $O_1$ and $O_2$ and radii $13$ and $10$, respectively. Assume $O_1O_2=2$. Fix a circle $\Omega$ with radius $2$, internally tangent to $\Gamma_1$ at $P$ and externally tangent to $\Gamma_2$ at $Q$ . Let $\omega$ be a second variable circle internally tangent to $\Gamma_1$ at $X$ and externally tangent to $\Gamma_2$ at $Y$. Line $PQ$ meets $\Gamma_2$ again at $R$, line $XY$ meets $\Gamma_2$ again at $Z$, and lines $PZ$ and $XR$ meet at $M$. As $\omega$ varies, the locus of point $M$ encloses a region of area $\tfrac{p}{q} \pi$, where $p$ and $q$ are relatively prime positive integers. Compute $p+q$. [i]Proposed by Michael Kural[/i]

2002 AMC 10, 5

Tags: geometry
Circles of radius $ 2$ and $ 3$ are externally tangent and are circumscribed by a third circle, as shown in the figure. Find the area of the shaded region. [asy]unitsize(3mm); defaultpen(linewidth(0.7)+fontsize(8)); filldraw(Circle((0,0),5),grey,black); filldraw(Circle((-2,0),3),white,black); filldraw(Circle((3,0),2),white,black); dot((-2,0)); dot((3,0)); draw((-2,0)--(1,0)); draw((3,0)--(5,0)); label("$3$",(-0.5,0),N); label("$2$",(4,0),N);[/asy] $ \textbf{(A)}\ 3\pi \qquad \textbf{(B)}\ 4\pi \qquad \textbf{(C)}\ 6\pi \qquad \textbf{(D)}\ 9\pi \qquad \textbf{(E)}\ 12\pi$

2013 Korea Junior Math Olympiad, 2

A pentagon $ABCDE$ is inscribed in a circle $O$, and satis es $AB = BC , AE = DE$. The circle that is tangent to $DE$ at $E$ and passing $A$ hits $EC$ at $F$ and $BF$ at $G (\ne F)$. Let $DG\cap O = H (\ne D)$. Prove that the tangent to $O$ at $E$ is perpendicular to $HA$.

2022 Sharygin Geometry Olympiad, 9.6

Lateral sidelines $AB$ and $CD$ of a trapezoid $ABCD$ ($AD >BC$) meet at point $P$. Let $Q$ be a point of segment $AD$ such that $BQ = CQ$. Prove that the line passing through the circumcenters of triangles $AQC$ and $BQD$ is perpendicular to $PQ$.

2000 Kazakhstan National Olympiad, 8

Given a triangle $ ABC $ and a point $ M $ inside it. Prove that $$ \min \{MA, MB, MC\} + MA + MB + MC <AB + BC + AC. $$

2016 Japan Mathematical Olympiad Preliminary, 5

Let $ABCD$ be a quadrilateral with $AC=20$, $AD=16$. We take point $P$ on segment $CD$ so that triangle $ABP$ and $ACD$ are congruent. If the area of triangle $APD$ is $28$, find the area of triangle $BCP$. Note that $XY$ expresses the length of segment $XY$.

2014 Contests, 3

Say that a positive integer is [i]sweet[/i] if it uses only the digits 0, 1, 2, 4, and 8. For instance, 2014 is sweet. There are sweet integers whose squares are sweet: some examples (not necessarily the smallest) are 1, 2, 11, 12, 20, 100, 202, and 210. There are sweet integers whose cubes are sweet: some examples (not necessarily the smallest) are 1, 2, 10, 20, 200, 202, 281, and 2424. Prove that there exists a sweet positive integer $n$ whose square and cube are both sweet, such that the sum of all the digits of $n$ is 2014.

2023 Pan-American Girls’ Mathematical Olympiad, 3

Let $ABC$ an acute triangle and $D,E$ and $F$ be the feet of altitudes from $A,B$ and $C$, respectively. The line $EF$ and the circumcircle of $ABC$ intersect at $P$, such that $F$ it´s between $E$ and $P$. Lines $BP$ and $DF$ intersect at $Q$. Prove that if $ED=EP$, then $CQ$ and $DP$ are parallel.

2001 Tournament Of Towns, 5

Tags: symmetry , ratio , geometry
On the plane is a set of at least four points. If any one point from this set is removed, the resulting set has an axis of symmetry. Is it necessarily true that the whole set has an axis of symmetry?

2016 Saint Petersburg Mathematical Olympiad, 3

On the side $AB$ of the non-isosceles triangle $ABC$, let the points $P$ and $Q$ be so that $AC = AP$ and $BC = BQ$. The perpendicular bisector of the segment $PQ$ intersects the angle bisector of the $\angle C$ at the point $R$ (inside the triangle). Prove that $\angle ACB + \angle PRQ = 180^o$.

Cono Sur Shortlist - geometry, 2021.G6.6

Tags: geometry
Let $ABC$ be a scalene triangle with circle $\Gamma$. Let $P,Q,R,S$ distinct points on the $BC$ side, in that order, such that $\angle BAP = \angle CAS$ and $\angle BAQ = \angle CAR$. Let $U, V, W, Z$ be the intersections, distinct from $A$, of the $AP, AQ, AR$ and $AS$ with $\Gamma$, respectively. Let $X = UQ \cap SW$, $Y = PV \cap ZR$, $T = UR \cap VS$ and $K = PW \cap ZQ$. Suppose that the points $M$ and $N$ are well determined, such that $M = KX \cap TY$ and $N = TX \cap KY$. Show that $M, N, A$ are collinear.