Found problems: 25757
2012 Romania National Olympiad, 1
Let $P$ be a point inside the square $ABCD$ and $PA = 1$, $PB = \sqrt2$ and $PC =\sqrt3$.
a) Determine the length of segment $[PD]$.
b) Determine the angle $\angle APB$.
2021 China Team Selection Test, 1
A cyclic quadrilateral $ABCD$ has circumcircle $\Gamma$, and $AB+BC=AD+DC$. Let $E$ be the midpoint of arc $BCD$, and $F (\neq C)$ be the antipode of $A$ [i]wrt[/i] $\Gamma$. Let $I,J,K$ be the incenter of $\triangle ABC$, the $A$-excenter of $\triangle ABC$, the incenter of $\triangle BCD$, respectively.
Suppose that a point $P$ satisfies $\triangle BIC \stackrel{+}{\sim} \triangle KPJ$. Prove that $EK$ and $PF$ intersect on $\Gamma.$
1996 All-Russian Olympiad, 6
In isosceles triangle $ABC$ ($AB = BC$) one draws the angle bisector $CD$. The perpendicular to $CD$ through the center of the circumcircle of $ABC$ intersects $BC$ at $E$. The parallel to $CD$ through $E$ meets $AB$ at $F$. Show that $BE$ = $FD$.
[i]M. Sonkin[/i]
2008 Sharygin Geometry Olympiad, 18
(A.Abdullayev, 9--11) Prove that the triangle having sides $ a$, $ b$, $ c$ and area $ S$ satisfies the inequality
\[ a^2\plus{}b^2\plus{}c^2\minus{}\frac12(|a\minus{}b|\plus{}|b\minus{}c|\plus{}|c\minus{}a|)^2\geq 4\sqrt3 S.\]
2009 ELMO Problems, 5
Let $ABCDEFG$ be a regular heptagon with center $O$. Let $M$ be the centroid of $\triangle ABD$. Prove that $\cos^2(\angle GOM)$ is rational and determine its value.
[i]Evan o'Dorney[/i]
2012 Pan African, 1
The numbers $\frac{1}{1}, \frac{1}{2}, \cdots , \frac{1}{2012}$ are written on the blackboard. Aïcha chooses any two numbers from the blackboard, say $x$ and $y$, erases them and she writes instead the number $x + y + xy$. She continues to do this until only one number is left on the board. What are the possible values of the final number?
2016 Baltic Way, 16
In triangle $ABC,$ the points $D$ and $E$ are the intersections of the angular bisectors from $C$ and $B$ with the sides $AB$ and $AC,$ respectively. Points $F$ and $G$ on the extensions of $AB$ and $AC$ beyond $B$ and $C,$ respectively, satisfy $BF = CG = BC.$ Prove that $F G \parallel DE.$
2012 Greece Team Selection Test, 2
Given is an acute triangle $ABC$ $\left(AB<AC<BC\right)$,inscribed in circle $c(O,R)$.The perpendicular bisector of the angle bisector $AD$ $\left(D\in BC\right)$ intersects $c$ at $K,L$ ($K$ lies on the small arc $\overarc{AB}$).The circle $c_1(K,KA)$ intersects $c$ at $T$ and the circle $c_2(L,LA)$ intersects $c$ at $S$.Prove that $\angle{BAT}=\angle{CAS}$.
[hide=Diagram][asy]import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -6.94236331697463, xmax = 15.849400903703716, ymin = -5.002235438802758, ymax = 7.893104843949444; /* image dimensions */
pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqqqtt = rgb(0.,0.,0.2);
draw((1.8318261909633622,3.572783369254345)--(0.,0.)--(6.,0.)--cycle, aqaqaq);
draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-117.14497824050169,-101.88970202103212)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt);
draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-55.85706977865775,-40.60179355918817)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt);
/* draw figures */
draw((1.8318261909633622,3.572783369254345)--(0.,0.), uququq);
draw((0.,0.)--(6.,0.), uququq);
draw((6.,0.)--(1.8318261909633622,3.572783369254345), uququq);
draw(circle((3.,0.7178452373968209), 3.0846882800136055));
draw((2.5345020274407277,0.)--(1.8318261909633622,3.572783369254345));
draw(circle((-0.01850947366601585,1.3533783539547308), 2.889550258039566));
draw(circle((5.553011501106743,2.4491551634556963), 3.887127532933951));
draw((-0.01850947366601585,1.3533783539547308)--(5.553011501106743,2.4491551634556963), linetype("2 2"));
draw((1.8318261909633622,3.572783369254345)--(0.7798408954511686,-1.423695174396108));
draw((1.8318261909633622,3.572783369254345)--(5.22015910454883,-1.4236951743961088));
/* dots and labels */
dot((1.8318261909633622,3.572783369254345),linewidth(3.pt) + dotstyle);
label("$A$", (1.5831274347452782,3.951671933606579), NE * labelscalefactor);
dot((0.,0.),linewidth(3.pt) + dotstyle);
label("$B$", (-0.6,0.05), NE * labelscalefactor);
dot((6.,0.),linewidth(3.pt) + dotstyle);
label("$C$", (6.188606107156787,0.07450151636712989), NE * labelscalefactor);
dot((2.5345020274407277,0.),linewidth(3.pt) + dotstyle);
label("$D$", (2.3,-0.7), NE * labelscalefactor);
dot((-0.01850947366601585,1.3533783539547308),linewidth(3.pt) + dotstyle);
label("$K$", (-0.3447473583572136,1.6382221818835927), NE * labelscalefactor);
dot((5.553011501106743,2.4491551634556963),linewidth(3.pt) + dotstyle);
label("$L$", (5.631664500260511,2.580738747400365), NE * labelscalefactor);
dot((0.7798408954511686,-1.423695174396108),linewidth(3.pt) + dotstyle);
label("$T$", (0.5977692071595602,-1.960477431907719), NE * labelscalefactor);
dot((5.22015910454883,-1.4236951743961088),linewidth(3.pt) + dotstyle);
label("$S$", (5.160406217502124,-1.8747941077698307), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/hide]
2008 All-Russian Olympiad, 6
A magician should determine the area of a hidden convex $ 2008$-gon $ A_{1}A_{2}\cdots A_{2008}$. In each step he chooses two points on the perimeter, whereas the chosen points can be vertices or points dividing selected sides in selected ratios. Then his helper divides the polygon into two parts by the line through these two points and announces the area of the smaller of the two parts. Show that the magician can find the area of the polygon in $ 2006$ steps.
1937 Moscow Mathematical Olympiad, 035
Given three points that are not on the same straight line. Three circles pass through each pair of the points so that the tangents to the circles at their intersection points are perpendicular to each other. Construct the circles.
2006 Tuymaada Olympiad, 3
A line $d$ is given in the plane. Let $B\in d$ and $A$ another point, not on $d$, and such that $AB$ is not perpendicular on $d$. Let $\omega$ be a variable circle touching $d$ at $B$ and letting $A$ outside, and $X$ and $Y$ the points on $\omega$ such that $AX$ and $AY$ are tangent to the circle. Prove that the line $XY$ passes through a fixed point.
[i]Proposed by F. Bakharev [/i]
2004 Croatia National Olympiad, Problem 3
The altitudes of a tetrahedron meet at a single point. Prove that this point, the centroid of one face of the tetrahedron, the foot of the altitude on that face, and the three points dividing the other three altitudes in ratio $2:1$ (closer to the feet) all lie on a sphere.
2012 AMC 12/AHSME, 22
Distinct planes $p_1,p_2,....,p_k$ intersect the interior of a cube $Q$. Let $S$ be the union of the faces of $Q$ and let $ P =\bigcup_{j=1}^{k}p_{j} $. The intersection of $P$ and $S$ consists of the union of all segments joining the midpoints of every pair of edges belonging to the same face of $Q$. What is the difference between the maximum and minimum possible values of $k$?
$ \textbf{(A)}\ 8\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 20\qquad\textbf{(D)}\ 23\qquad\textbf{(E)}\ 24 $
2022 OMpD, 2
Let $ABCD$ be a rectangle. The point $E$ lies on side $ \overline{AB}$ and the point $F$ is lies side $ \overline{AD}$, such that $\angle FEC=\angle CEB$ and $\angle DFC=\angle CFE$. Determine the measure of the angle $\angle FCE$ and the ratio $AD/AB$.
2019 Iran MO (3rd Round), 1
Given a cyclic quadrilateral $ABCD$. There is a point $P$ on side $BC$ such that $\angle PAB=\angle PDC=90^\circ$. The medians of vertexes $A$ and $D$ in triangles $PAB$ and $PDC$ meet at $K$ and the bisectors of $\angle PAB$ and $\angle PDC$ meet at $L$. Prove that $KL\perp BC$.
2016 BMT Spring, 8
A regular unit $7$-simplex is a polytope in $7$-dimensional space with $8$ vertices that are all exactly a distance of $ 1$ apart. (It is the $7$-dimensional analogue to the triangle and the tetrahedron.) In this $7$-dimensional space, there exists a point that is equidistant from all $8$ vertices, at a distance $d$. Determine $d$.
1998 USAMTS Problems, 4
As shown on the figure, square $PQRS$ is inscribed in right triangle $ABC$, whose right angle is at $C$, so that $S$ and $P$ are on sides $BC$ and $CA$, respectively, while $Q$ and $R$ are on side $AB$. Prove that $A B\geq3QR$ and determine when equality occurs.
[asy]
defaultpen(linewidth(0.7)+fontsize(10));
size(150);
real a=8, b=6;
real y=a/((a^2+b^2)/(a*b)+1), r=degrees((a,b))+180;
pair A=b*dir(-r)*dir(90), B=a*dir(180)*dir(-r), C=origin, S=y*dir(-r)*dir(180), P=(y*b/a)*dir(90-r), Q=foot(P, A, B), R=foot(S, A, B);
draw(A--B--C--cycle^^R--S--P--Q);
pair point=incenter(A,B,C);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$S$", S, dir(point--S));
label("$R$", R, dir(270));
label("$Q$", Q, dir(270));
label("$P$", P, dir(point--P));[/asy]
2013 ELMO Shortlist, 3
In $\triangle ABC$, a point $D$ lies on line $BC$. The circumcircle of $ABD$ meets $AC$ at $F$ (other than $A$), and the circumcircle of $ADC$ meets $AB$ at $E$ (other than $A$). Prove that as $D$ varies, the circumcircle of $AEF$ always passes through a fixed point other than $A$, and that this point lies on the median from $A$ to $BC$.
[i]Proposed by Allen Liu[/i]
1990 Greece National Olympiad, 3
In a triangle $ABC$ with medians $AD$ and $BE$ , holds that $\angle CAD= \angle CBE=30^o$. Prove that triangle $ABC$ is equilateral.
2012 AMC 10, 21
Let points $A=(0,0,0)$, $B=(1,0,0)$, $C=(0,2,0)$, and $D=(0,0,3)$. Points $E,F,G$, and $H$ are midpoints of line segments $\overline{BD},\overline{AB},\overline{AC}$, and $\overline{DC}$ respectively. What is the area of $EFGH$?
$ \textbf{(A)}\ \sqrt2
\qquad\textbf{(B)}\ \frac{2\sqrt5}{3}
\qquad\textbf{(C)}\ \frac{3\sqrt5}{4}
\qquad\textbf{(D)}\ \sqrt3
\qquad\textbf{(E)}\ \frac{2\sqrt7}{3}
$
2013 AMC 10, 3
Square $ ABCD $ has side length $ 10 $. Point $ E $ is on $ \overline{BC} $, and the area of $ \bigtriangleup ABE $ is $ 40 $. What is $ BE $?
$\textbf{(A)} \ 4 \qquad \textbf{(B)} \ 5 \qquad \textbf{(C)} \ 6 \qquad \textbf{(D)} \ 7 \qquad \textbf{(E)} \ 8 \qquad $
[asy]
pair A,B,C,D,E;
A=(0,0);
B=(0,50);
C=(50,50);
D=(50,0);
E = (30,50);
draw(A--B);
draw(B--E);
draw(E--C);
draw(C--D);
draw(D--A);
draw(A--E);
dot(A);
dot(B);
dot(C);
dot(D);
dot(E);
label("A",A,SW);
label("B",B,NW);
label("C",C,NE);
label("D",D,SE);
label("E",E,N);
[/asy]
2009 AMC 12/AHSME, 5
One dimension of a cube is increased by $ 1$, another is decreased by $ 1$, and the third is left unchanged. The volume of the new rectangular solid is $ 5$ less than that of the cube. What was the volume of the cube?
$ \textbf{(A)}\ 8 \qquad
\textbf{(B)}\ 27 \qquad
\textbf{(C)}\ 64 \qquad
\textbf{(D)}\ 125 \qquad
\textbf{(E)}\ 216$
2014 ELMO Shortlist, 2
A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$).
What is the maximum possible number of filled black squares?
[i]Proposed by David Yang[/i]
2003 Federal Math Competition of S&M, Problem 3
Let $ABCD$ be a rectangle. Determine the set of all points $P$ from the region between the parallel lines $AB$ and $CD$ such that $\angle APB=\angle CPD$.
2016 China Team Selection Test, 3
In cyclic quadrilateral $ABCD$, $AB>BC$, $AD>DC$, $I,J$ are the incenters of $\triangle ABC$,$\triangle ADC$ respectively. The circle with diameter $AC$ meets segment $IB$ at $X$, and the extension of $JD$ at $Y$. Prove that if the four points $B,I,J,D$ are concyclic, then $X,Y$ are the reflections of each other across $AC$.