This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 Israel Oral Olympiad, 1

Tags: geometry
$ABCDEFG$ is a convex polygon with area 1. Points $X,Y,Z,U,V$ are arbitrary points on $AB, BC, CD, EF, FG$. Let $M, I, N, K, S$ be the midpoints of $EZ, BU, AV, FX, TE$. Find the largest and smallest possible values of the area of $AKBSCMDEIFNG$.

2005 Sharygin Geometry Olympiad, 5

There are two parallel lines $p_1$ and $p_2$. Points $A$ and $B$ lie on $p_1$, and $C$ on $p_2$. We will move the segment $BC$ parallel to itself and consider all the triangles $AB'C '$ thus obtained. Find the locus of the points in these triangles: a) points of intersection of heights, b) the intersection points of the medians, c) the centers of the circumscribed circles.

2014 ELMO Shortlist, 2

A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$). What is the maximum possible number of filled black squares? [i]Proposed by David Yang[/i]

2011 Tuymaada Olympiad, 2

A circle passing through the vertices $A$ and $B$ of a cyclic quadrilateral $ABCD$ intersects diagonals $AC$ and $BD$ at $E$ and $F$, respectively. The lines $AF$ and $BC$ meet at a point $P$, and the lines $BE$ and $AD$ meet at a point $Q$. Prove that $PQ$ is parallel to $CD$.

2017 Bundeswettbewerb Mathematik, 3

Let $M$ be the incenter of the tangential quadrilateral $A_1A_2A_3A_4$. Let line $g_1$ through $A_1$ be perpendicular to $A_1M$; define $g_2,g_3$ and $g_4$ similarly. The lines $g_1,g_2,g_3$ and $g_4$ define another quadrilateral $B_1B_2B_3B_4$ having $B_1$ be the intersection of $g_1$ and $g_2$; similarly $B_2,B_3$ and $B_4$ are intersections of $g_2$ and $g_3$, $g_3$ and $g_4$, resp. $g_4$ and $g_1$. Prove that the diagonals of quadrilateral $B_1B_2B_3B_4$ intersect in point $M$. [asy] import graph; size(15cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-9.773972777861085,xmax=12.231603726660566,ymin=-3.9255487671791487,ymax=7.37238601960895; pair M=(2.,2.), A_4=(-1.6391623316400197,1.2875505916864178), A_1=(3.068893183992864,-0.5728665455336459), A_2=(4.30385937824148,2.2922812065339455), A_3=(2.221541124684679,4.978916319940133), B_4=(-0.9482172571022687,-2.24176848577888), B_1=(4.5873184669543345,0.057960746374459436), B_2=(3.9796042717514277,4.848169684238838), B_3=(-2.4295496490492385,5.324816563638236); draw(circle(M,2.),linewidth(0.8)); draw(A_4--A_1,linewidth(0.8)); draw(A_1--A_2,linewidth(0.8)); draw(A_2--A_3,linewidth(0.8)); draw(A_3--A_4,linewidth(0.8)); draw(M--A_3,linewidth(0.8)+dotted); draw(M--A_2,linewidth(0.8)+dotted); draw(M--A_1,linewidth(0.8)+dotted); draw(M--A_4,linewidth(0.8)+dotted); draw((xmin,-0.07436970390935019*xmin+5.144131675605378)--(xmax,-0.07436970390935019*xmax+5.144131675605378),linewidth(0.8)); draw((xmin,-7.882338401302275*xmin+36.2167572574517)--(xmax,-7.882338401302275*xmax+36.2167572574517),linewidth(0.8)); draw((xmin,0.4154483588930812*xmin-1.847833182441644)--(xmax,0.4154483588930812*xmax-1.847833182441644),linewidth(0.8)); draw((xmin,-5.107958950031516*xmin-7.085223310768749)--(xmax,-5.107958950031516*xmax-7.085223310768749),linewidth(0.8)); dot(M,linewidth(3.pt)+ds); label("$M$",(2.0593440948136896,2.0872038897020024),NE*lsf); dot(A_4,linewidth(3.pt)+ds); label("$A_4$",(-2.6355449660387147,1.085078446888477),NE*lsf); dot(A_1,linewidth(3.pt)+ds); label("$A_1$",(3.1575637581709772,-1.2486383377457595),NE*lsf); dot(A_2,linewidth(3.pt)+ds); label("$A_2$",(4.502882845783654,2.30684782237346),NE*lsf); dot(A_3,linewidth(3.pt)+ds); label("$A_3$",(2.169166061149418,5.203402184478307),NE*lsf); label("$g_3$",(-9.691606303109287,5.354407388189934),NE*lsf); label("$g_2$",(3.0889250292111465,6.727181967386543),NE*lsf); label("$g_1$",(-4.763345563793459,-3.4725331560442676),NE*lsf); label("$g_4$",(-2.663000457622647,6.878187171098171),NE*lsf); dot(B_4,linewidth(3.pt)+ds); label("$B_4$",(-1.5647807942653595,-3.0332452907013523),NE*lsf); dot(B_1,linewidth(3.pt)+ds); label("$B_1$",(4.955898456918535,-0.6583452686912173),NE*lsf); dot(B_2,linewidth(3.pt)+ds); label("$B_2$",(4.104778217816637,5.0661247265586455),NE*lsf); dot(B_3,linewidth(3.pt)+ds); label("$B_3$",(-3.4454819677647146,5.656417795613188),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]

1992 China Team Selection Test, 1

A triangle $ABC$ is given in the plane with $AB = \sqrt{7},$ $BC = \sqrt{13}$ and $CA = \sqrt{19},$ circles are drawn with centers at $A,B$ and $C$ and radii $\frac{1}{3},$ $\frac{2}{3}$ and $1,$ respectively. Prove that there are points $A',B',C'$ on these three circles respectively such that triangle $ABC$ is congruent to triangle $A'B'C'.$

2009 Junior Balkan MO, 1

Let $ ABCDE$ be a convex pentagon such that $ AB\plus{}CD\equal{}BC\plus{}DE$ and $ k$ a circle with center on side $ AE$ that touches the sides $ AB$, $ BC$, $ CD$ and $ DE$ at points $ P$, $ Q$, $ R$ and $ S$ (different from vertices of the pentagon) respectively. Prove that lines $ PS$ and $ AE$ are parallel.

1987 National High School Mathematics League, 1

Tags: rotation , geometry
$\triangle ABC$ and $\triangle ADE$ $(\angle ABC=\angle ADE=\frac{\pi}{2})$ are two isosceles right triangle that are not congruent. Fix $\triangle ABC$, but rotate $\triangle ADE$ on the plane. Prove that there exists point $M\in BC$, satisfying that $\triangle BMD$ is an isosceles right triangle.

1998 Vietnam National Olympiad, 2

Let be given a tetrahedron whose circumcenter is $O$. Draw diameters $AA_{1},BB_{1},CC_{1},DD_{1}$ of the circumsphere of $ABCD$. Let $A_{0},B_{0},C_{0},D_{0}$ be the centroids of triangle $BCD,CDA,DAB,ABC$. Prove that $A_{0}A_{1},B_{0}B_{1},C_{0}C_{1},D_{0}D_{1}$ are concurrent at a point, say, $F$. Prove that the line through $F$ and a midpoint of a side of $ABCD$ is perpendicular to the opposite side.

2018 Czech and Slovak Olympiad III A, 3

In triangle $ABC$ let be $D$ an intersection of $BC$ and the $A$-angle bisector. Denote $E,F$ the circumcenters of $ABD$ and $ACD$ respectively. Assuming that the circumcenter of $AEF$ lies on the line $BC$ what is the possible size of the angle $BAC$ ?

2014 Dutch IMO TST, 4

Let $\triangle ABC$ be a triangle with $|AC|=2|AB|$ and let $O$ be its circumcenter. Let $D$ be the intersection of the bisector of $\angle A$ with $BC$. Let $E$ be the orthogonal projection of $O$ to $AD$ and let $F\ne D$ be the point on $AD$ satisfying $|CD|=|CF|$. Prove that $\angle EBF=\angle ECF$.

1993 All-Russian Olympiad Regional Round, 9.7

On the diagonal $AC$ of the rhombus $ABCD$, a point $E$ is taken, which is different from points $A$ and $C$, and on the lines $AB$ and $BC$ are points $N$ and $M$, respectively, with $AE = NE$ and $CE = ME$. Let $K$ be the intersection point of lines $AM$ and $CN$. Prove that points $K, E$ and $D$ are collinear.

1971 IMO Longlists, 32

Tags: geometry
Two half-lines $a$ and $b$, with the common endpoint $O$, make an acute angle $\alpha$. Let $A$ on $a$ and $B$ on $b$ be points such that $OA=OB$, and let $b$ be the line through $A$ parallel to $b$. Let $\beta$ be the circle with centre $B$ and radius $BO$. We construct a sequence of half-lines $c_1,c_2,c_3,\ldots $, all lying inside the angle $\alpha$, in the following manner: (i) $c_i$ is given arbitrarily; (ii) for every natural number $k$, the circle $\beta$ intercepts on $c_k$ a segment that is of the same length as the segment cut on $b'$ by $a$ and $c_{k+1}$. Prove that the angle determined by the lines $c_k$ and $b$ has a limit as $k$ tends to infinity and find that limit.

2016 USAJMO, 1

Tags: geometry
The isosceles triangle $\triangle ABC$, with $AB=AC$, is inscribed in the circle $\omega$. Let $P$ be a variable point on the arc $\stackrel{\frown}{BC}$ that does not contain $A$, and let $I_B$ and $I_C$ denote the incenters of triangles $\triangle ABP$ and $\triangle ACP$, respectively. Prove that as $P$ varies, the circumcircle of triangle $\triangle PI_BI_C$ passes through a fixed point.

1973 Bundeswettbewerb Mathematik, 2

Tags: geometry
In a planar lake, every point can be reached by a straight line from the point $A$. The same holds for the point $B$. Show that this holds for every point on the segment $[AB]$, too.

2022 Israel TST, 3

In triangle $ABC$, the angle bisectors are $BE$ and $CF$ (where $E, F$ are on the sides of the triangle), and their intersection point is $I$. Point $N$ lies on the circumcircle of $AEF$, and the angle $\angle IAN$ is right. The circumcircle of $AEF$ meets the line $NI$ a second time at the point $L$. Show that the circumcenter of $AIL$ lies on line $BC$.

2018 Regional Olympiad of Mexico Center Zone, 6

Let $\vartriangle ABC$ be a triangle with orthocenter $H$ and altitudes $AD$, $BE$ and $CF$. Let $D'$, $E' $ and $F'$ be the intersections of the heights $AD$, $BE$ and $CF$, respectively, with the circumcircle of $\vartriangle ABC $, so that they are different points from the vertices of triangle $\vartriangle ABC$. Let $L$, $M$ and $N$ be the midpoints of $BC$, $AC$ and $AB$, respectively. Let $ P$, $Q$ and $R$ be the intersections of the circumcircle with $LH$, $MH$ and $NH$, respectively, such that $ P$ and $ A$ are on opposite sides of $BC$, $Q$ and $A$ are on opposite sides of $AC$ and $R$ and $C$ are on opposite sides of $AB$. Show that there exists a triangle whose sides have the lengths of the segments $D' P$, $E'Q$, and $F'R$.

2003 Romania Team Selection Test, 2

Let $ABC$ be a triangle with $\angle BAC=60^\circ$. Consider a point $P$ inside the triangle having $PA=1$, $PB=2$ and $PC=3$. Find the maximum possible area of the triangle $ABC$.

2019 Nepal TST, P2

Tags: geometry
Let $H$ be orthocenter of an acute $\Delta ABC$, $M$ is a midpoint of $AC$. Line $MH$ meets lines $AB, BC$ at points $A_1, C_1$ respectively, $A_2$ and $C_2$ are projections of $A_1, C_1$ onto line $BH$ respectively. Prove that lines $CA_2, AC_2$ meet at circumscribed circle of $\Delta ABC$. [i]Proposed by Anton Trygub[/i]

2005 Cuba MO, 1

Determine all the quadrilaterals that can be divided by a diagonal into two triangles of equal area and equal perimeter.

Indonesia Regional MO OSP SMA - geometry, 2009.3

Given triangle $ABC$ and point $D$ on the $AC$ side. Let $r_1, r_2$ and $r$ denote the radii of the incircle of the triangles $ABD, BCD$, and $ABC$, respectively. Prove that $r_1 + r_2> r$.

2024 BMT, 3

Tags: geometry
A square with side length $6$ has a circle with radius $2$ inside of it, with the centers of the square and circle vertically aligned. Aarush is standing $4$ units directly above the center of the circle, at point $P.$ What is the area of the region inside the square that he can see? (Assume that Aarush can only see parts of the square along straight lines of sight from $P$ that are unblocked by any other objects.) [center] [img] https://cdn.artofproblemsolving.com/attachments/7/7/ede4444ab82235fc90a27c0b481d320b486cf2.png [/img] [/center]

1987 Brazil National Olympiad, 5

Tags: geometry , prism , maximum
$A$ and $B$ wish to divide a cake into two pieces. Each wants the largest piece he can get. The cake is a triangular prism with the triangular faces horizontal. $A$ chooses a point $P$ on the top face. $B$ then chooses a vertical plane through the point $P$ to divide the cake. $B$ chooses which piece to take. Which point $P$ should $A $ choose in order to secure as large a slice as possible?

1992 IMO Longlists, 27

Tags: geometry , circles
Let $ABC$ be an arbitrary scalene triangle. Define $\sum$ to be the set of all circles $y$ that have the following properties: [b](i)[/b] $y$ meets each side of $ABC$ in two (possibly coincident) points; [b](ii)[/b] if the points of intersection of $y$ with the sides of the triangle are labeled by $P, Q, R, S, T , U$, with the points occurring on the sides in orders $\mathcal B(B,P,Q,C), \mathcal B(C, R, S,A), \mathcal B(A, T,U,B)$, then the following relations of parallelism hold: $TS \parallel BC; PU\parallel CA; RQ\parallel AB$. (In the limiting cases, some of the conditions of parallelism will hold vacuously; e.g., if $A$ lies on the circle $y$, then $T$ , $S$ both coincide with $A$ and the relation $TS \parallel BC$ holds vacuously.) [i](a)[/i] Under what circumstances is $\sum$ nonempty? [i](b)[/i] Assuming that Σ is nonempty, show how to construct the locus of centers of the circles in the set $\sum$. [i](c)[/i] Given that the set $\sum$has just one element, deduce the size of the largest angle of $ABC.$ [i](d)[/i] Show how to construct the circles in $\sum$ that have, respectively, the largest and the smallest radii.

2005 All-Russian Olympiad, 2

Do there exist 12 rectangular parallelepipeds $P_1,\,P_2,\ldots,P_{12}$ with edges parallel to coordinate axes $OX,\,OY,\,OZ$ such that $P_i$ and $P_j$ have a common point iff $i\ne j\pm 1$ modulo 12?