Found problems: 25757
2010 Today's Calculation Of Integral, 567
Let $ a$ be a positive real numbers. In the coordinate plane denote by $ S$ the area of the figure bounded by the curve $ y=\sin x\ (0\leq x\leq \pi)$ and the $x$-axis and denote $T$ by the area of the figure bounded by the curves $y=\sin x\ \left(0\leq x\leq \frac{\pi}{2}\right),\ y=a\cos x\ \left(0\leq x\leq \frac{\pi}{2}\right)$ and the $x$-axis. Find the value of $a$ such that $ S: T=3: 1$.
2010 Contests, 2
Three circles $\Gamma_A$, $\Gamma_B$ and $\Gamma_C$ share a common point of intersection $O$. The other common point of $\Gamma_A$ and $\Gamma_B$ is $C$, that of $\Gamma_A$ and $\Gamma_C$ is $B$, and that of $\Gamma_C$ and $\Gamma_B$ is $A$. The line $AO$ intersects the circle $\Gamma_A$ in the point $X \ne O$. Similarly, the line $BO$ intersects the circle $\Gamma_B$ in the point $Y \ne O$, and the line $CO$ intersects the circle $\Gamma_C$ in the point $Z \ne O$. Show that
\[\frac{|AY |\cdot|BZ|\cdot|CX|}{|AZ|\cdot|BX|\cdot|CY |}= 1.\]
2006 France Team Selection Test, 1
Let $ABCD$ be a square and let $\Gamma$ be the circumcircle of $ABCD$. $M$ is a point of $\Gamma$ belonging to the arc $CD$ which doesn't contain $A$. $P$ and $R$ are respectively the intersection points of $(AM)$ with $[BD]$ and $[CD]$, $Q$ and $S$ are respectively the intersection points of $(BM)$ with $[AC]$ and $[DC]$.
Prove that $(PS)$ and $(QR)$ are perpendicular.
2023 CMIMC Geometry, 1
Triangle $ABC$ is isosceles with $AB=AC$. The bisectors of angles $ABC$ and $ACB$ meet at $I$. If the measure of angle $CIA$ is $130^\circ$, compute the measure of angle $CAB$.
[i]Proposed by Connor Gordon[/i]
1955 Moscow Mathematical Olympiad, 291
Find all rectangles that can be cut into $13$ equal squares.
2021 HMNT, 9
$ABCDE$ is a cyclic convex pentagon, and $AC = BD = CE$. $AC$ and $BD$ intersect at $X$, and $BD$ and $CE$ intersect at $Y$ . If $AX = 6$, $XY = 4$, and $Y E = 7$, then the area of pentagon $ABCDE$ can be written as $\frac{a\sqrt{b}}{c}$ , where $a$, $ b$, $c$ are integers, $c$ is positive, $b$ is square-free, and gcd$(a, c) = 1$. Find $100a + 10b + c$.
2017 Romania National Olympiad, 2
Consider the triangle $ABC$, with $\angle A= 90^o, \angle B = 30^o$, and $D$ is the foot of the altitude from $A$. Let the point $E \in (AD)$ such that $DE = 3AE$ and $F$ the foot of the perpendicular from $D$ to the line $BE$.
a) Prove that $AF \perp FC$.
b) Determine the measure of the angle $AFB$.
2018 Taiwan TST Round 1, 6
Given six points $ A, B, C, D, E, F $ such that $ \triangle BCD \stackrel{+}{\sim} \triangle ECA \stackrel{+}{\sim} \triangle BFA $ and let $ I $ be the incenter of $ \triangle ABC. $ Prove that the circumcenter of $ \triangle AID, \triangle BIE, \triangle CIF $ are collinear.
[i]Proposed by Telv Cohl[/i]
2008 Tournament Of Towns, 4
Each of Peter and Basil draws a convex quadrilateral with no parallel sides. The angles between a diagonal and the four sides of Peter's quadrilateral are $\alpha, \alpha, \beta$ and $\gamma$ in some order. The angles between a diagonal and the four sides of Basil's quadrilateral are also $\alpha, \alpha, \beta$ and $\gamma$ in some order. Prove that the acute angle between the diagonals of Peter's quadrilateral is equal to the acute angle between the diagonals of Basil's quadrilateral.
1987 IMO Shortlist, 21
In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.[i](IMO Problem 2)[/i]
[i]Proposed by Soviet Union.[/i]
2024 TASIMO, 1
Let $ABC$ be a triangle with $AB<AC$ and incenter $I.$ A point $D$ lies on segment $AC$ such that $AB=AD,$ and the line $BI$ intersects $AC$ at $E.$ Suppose the line $CI$ intersects $BD$ at $F,$ and $G$ lies on segment $DI$ such that $FD=FG.$ Prove that the lines $AG$ and $EF$ intersect on the circumcircle of triangle $CEI.$ \\
Proposed by Avan Lim Zenn Ee, Malaysia
2004 Iran MO (3rd Round), 11
assume that ABC is acute traingle and AA' is median we extend it until it meets circumcircle at A". let $AP_a$ be a diameter of the circumcircle. the pependicular from A' to $AP_a$ meets the tangent to circumcircle at A" in the point $X_a$; we define $X_b,X_c$ similary . prove that $X_a,X_b,X_c$ are one a line.
2008 Mid-Michigan MO, 10-12
[b]p1.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the square $ABCD$ is $14$ cm.
[img]https://cdn.artofproblemsolving.com/attachments/1/1/0f80fc5f0505fa9752b5c9e1c646c49091b4ca.png[/img]
[b]p2.[/b] If $a, b$, and $c$ are numbers so that $a + b + c = 0$ and $a^2 + b^2 + c^2 = 1$. Compute $a^4 + b^4 + c^4$.
[b]p3.[/b] A given fraction $\frac{a}{b}$ ($a, b$ are positive integers, $a \ne b$) is transformed by the following rule: first, $1$ is added to both the numerator and the denominator, and then the numerator and the denominator of the new fraction are each divided by their greatest common divisor (in other words, the new fraction is put in simplest form). Then the same transformation is applied again and again. Show that after some number of steps the denominator and the numerator differ exactly by $1$.
[b]p4.[/b] A goat uses horns to make the holes in a new $30\times 60$ cm large towel. Each time it makes two new holes. Show that after the goat repeats this $61$ times the towel will have at least two holes whose distance apart is less than $6$ cm.
[b]p5.[/b] You are given $555$ weights weighing $1$ g, $2$ g, $3$ g, $...$ , $555$ g. Divide these weights into three groups whose total weights are equal.
[b]p6.[/b] Draw on the regular $8\times 8$ chessboard a circle of the maximal possible radius that intersects only black squares (and does not cross white squares). Explain why no larger circle can satisfy the condition.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 IMO Shortlist, 2
Six points are chosen on the sides of an equilateral triangle $ABC$: $A_1$, $A_2$ on $BC$, $B_1$, $B_2$ on $CA$ and $C_1$, $C_2$ on $AB$, such that they are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths.
Prove that the lines $A_1B_2$, $B_1C_2$ and $C_1A_2$ are concurrent.
[i]Bogdan Enescu, Romania[/i]
2017 European Mathematical Cup, 3
Let $ABC$ be a scalene triangle and let its incircle touch sides $BC$, $CA$ and $AB$ at points $D$, $E$ and
$F$ respectively. Let line $AD$ intersect this incircle at point $X$. Point $M$ is chosen on the line $FX$ so that the
quadrilateral $AFEM$ is cyclic. Let lines $AM$ and $DE$ intersect at point $L$ and let $Q$ be the midpoint of segment
$AE$. Point $T$ is given on the line $LQ$ such that the quadrilateral $ALDT$ is cyclic. Let $S$ be a point such that
the quadrilateral $TFSA$ is a parallelogram, and let $N$ be the second point of intersection of the circumcircle of
triangle $ASX$ and the line $TS$. Prove that the circumcircles of triangles $TAN$ and $LSA$ are tangent to each
other.
2009 China Team Selection Test, 1
Given that circle $ \omega$ is tangent internally to circle $ \Gamma$ at $ S.$ $ \omega$ touches the chord $ AB$ of $ \Gamma$ at $ T$. Let $ O$ be the center of $ \omega.$ Point $ P$ lies on the line $ AO.$ Show that $ PB\perp AB$ if and only if $ PS\perp TS.$
2017 Polish Junior Math Olympiad First Round, 4.
Quadrilateral $ABCD$ is inscribed in a circle with $\angle ABC=60^\circ$ and $BC=CD$. Prove that $AB=AD+DC$.
1997 Irish Math Olympiad, 2
A circle $ \Gamma$ is inscribed in a quadrilateral $ ABCD$. If $ \angle A\equal{}\angle B\equal{}120^{\circ}, \angle D\equal{}90^{\circ}$ and $ BC\equal{}1$, find, with proof, the length of $ AD$.
2014 Bosnia Herzegovina Team Selection Test, 1
Let $k$ be the circle and $A$ and $B$ points on circle which are not diametrically opposite. On minor arc $AB$ lies point arbitrary point $C$. Let $D$, $E$ and $F$ be foots of perpendiculars from $C$ on chord $AB$ and tangents of circle $k$ in points $A$ and $B$. Prove that $CD= \sqrt {CE \cdot CF}$
2019 Junior Balkan Team Selection Tests - Moldova, 11
Let $I$ be the center of inscribed circle of right triangle $\Delta ABC$ with $\angle A = 90$ and point $M$ is the midpoint of $(BC)$.The bisector of $\angle BAC$ intersects the circumcircle of $\Delta ABC $ in point $W$.Point $U$ is situated on the line $AB$ such that the lines $AB$ and $WU$ are perpendiculars.Point $P$ is situated on the line $WU$ such that the lines $PI$ and $WU$ are perpendiculars.Prove that the line $MP$ bisects the segment $CI$.
2014 IberoAmerican, 2
Let $ABC$ be an acute triangle and $H$ its orthocenter. Let $D$ be the intersection of the altitude from $A$ to $BC$. Let $M$ and $N$ be the midpoints of $BH$ and $CH$, respectively. Let the lines $DM$ and $DN$ intersect $AB$ and $AC$ at points $X$ and $Y$ respectively. If $P$ is the intersection of $XY$ with $BH$ and $Q$ the intersection of $XY$ with $CH$, show that $H, P, D, Q$ lie on a circumference.
1980 Bulgaria National Olympiad, Problem 3
Each diagonal of the base and each lateral edge of a $9$-gonal pyramid is colored either green or red. Show that there must exist a triangle with the vertices at vertices of the pyramid having all three sides of the same color.
2018 India IMO Training Camp, 1
Let $ABCD$ be a convex quadrilateral inscribed in a circle with center $O$ which does not lie on either diagonal. If the circumcentre of triangle $AOC$ lies on the line $BD$, prove that the circumcentre of triangle $BOD$ lies on the line $AC$.
2008 Germany Team Selection Test, 2
Point $ P$ lies on side $ AB$ of a convex quadrilateral $ ABCD$. Let $ \omega$ be the incircle of triangle $ CPD$, and let $ I$ be its incenter. Suppose that $ \omega$ is tangent to the incircles of triangles $ APD$ and $ BPC$ at points $ K$ and $ L$, respectively. Let lines $ AC$ and $ BD$ meet at $ E$, and let lines $ AK$ and $ BL$ meet at $ F$. Prove that points $ E$, $ I$, and $ F$ are collinear.
[i]Author: Waldemar Pompe, Poland[/i]
2004 China Team Selection Test, 2
Convex quadrilateral $ ABCD$ is inscribed in a circle, $ \angle{A}\equal{}60^o$, $ BC\equal{}CD\equal{}1$, rays $ AB$ and $ DC$ intersect at point $ E$, rays $ BC$ and $ AD$ intersect each other at point $ F$. It is given that the perimeters of triangle $ BCE$ and triangle $ CDF$ are both integers. Find the perimeter of quadrilateral $ ABCD$.