This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1994 Greece National Olympiad, 5

Three circles $O_1, \ O_2, \ O_3$ with radiii $r_1, \ r_2, \ r_3$ respectively are tangent extarnally in pairs. Let r be the radius of the inscrined circle of triangle $O_1O_2O_3$. Prove that $$ r=\sqrt{\dfrac{r_1r_2r_3}{r_1+r_2+r_3}}.$$

1998 APMO, 4

Let $ABC$ be a triangle and $D$ the foot of the altitude from $A$. Let $E$ and $F$ lie on a line passing through $D$ such that $AE$ is perpendicular to $BE$, $AF$ is perpendicular to $CF$, and $E$ and $F$ are different from $D$. Let $M$ and $N$ be the midpoints of the segments $BC$ and $EF$, respectively. Prove that $AN$ is perpendicular to $NM$.

2011 Brazil Team Selection Test, 4

Let $ABCDE$ be a convex pentagon such that $BC \parallel AE,$ $AB = BC + AE,$ and $\angle ABC = \angle CDE.$ Let $M$ be the midpoint of $CE,$ and let $O$ be the circumcenter of triangle $BCD.$ Given that $\angle DMO = 90^{\circ},$ prove that $2 \angle BDA = \angle CDE.$ [i]Proposed by Nazar Serdyuk, Ukraine[/i]

1931 Eotvos Mathematical Competition, 3

Let $A$ and $B$ be two given points, distance $1 $ apart. Determine a point $P$ on the line $AB$ such that $$\frac{1}{1 + AP}+\frac{1}{1 + BP}$$ is a maximum.

2023 Sinapore MO Open, P1

In a scalene triangle $ABC$ with centroid $G$ and circumcircle $\omega$ centred at $O$, the extension of $AG$ meets $\omega$ at $M$; lines $AB$ and $CM$ intersect at $P$; and lines $AC$ and $BM$ intersect at $Q$. Suppose the circumcentre $S$ of the triangle $APQ$ lies on $\omega$ and $A, O, S$ are collinear. Prove that $\angle AGO = 90^{o}$.

2021 Oral Moscow Geometry Olympiad, 4

Points $STABCD$ in space form a convex octahedron with faces $SAB,SBC,SCD,SDA,TAB,TBC,TCD,TDA$ such that there exists a sphere that is tangent to all of its edges. Prove that $A,B,C,D$ lie in one plane.

2023 Iranian Geometry Olympiad, 2

Let ${I}$ be the incenter of $\triangle {ABC}$ and ${BX}$, ${CY}$ are its two angle bisectors. ${M}$ is the midpoint of arc $\overset{\frown}{BAC}$. It is known that $MXIY$ are concyclic. Prove that the area of quadrilateral $MBIC$ is equal to that of pentagon $BXIYC$. [i]Proposed by Dominik Burek - Poland[/i]

2007 Federal Competition For Advanced Students, Part 2, 3

Tags: rhombus , geometry
Determine all rhombuses $ ABCD$ with the given length $ 2a$ of ist sides by giving the angle $ \alpha \equal{} \angle BAD$, such that there exists a circle which cuts each side of the rhombus in a chord of length $ a$.

1998 Moldova Team Selection Test, 7

Find all triangles with integer sidelenghts such that their perimeter and area are equal.

VMEO III 2006 Shortlist, G1

Given a circle $(O)$ and a point $P$ outside that circle. $M$ is a point running on the circle $(O)$. The circle with center $I$ and diameter $PM$ intersects circle $(O)$ again at $N$. The tangent of $(I)$ at $P$ intersects $MN$ at $Q$. The line through $Q$ perpendicular to $PO$ intersects $PM$ at $ A$. $AN$ intersects $(O)$ further at $ B$. $BM$ intersects $PO$ at $C$. Prove that $AC$ is perpendicular to $OQ$.

1969 IMO Longlists, 3

$(BEL 3)$ Construct the circle that is tangent to three given circles.

2008 Harvard-MIT Mathematics Tournament, 8

Let $ ABC$ be an equilateral triangle with side length 2, and let $ \Gamma$ be a circle with radius $ \frac {1}{2}$ centered at the center of the equilateral triangle. Determine the length of the shortest path that starts somewhere on $ \Gamma$, visits all three sides of $ ABC$, and ends somewhere on $ \Gamma$ (not necessarily at the starting point). Express your answer in the form of $ \sqrt p \minus{} q$, where $ p$ and $ q$ are rational numbers written as reduced fractions.

2014 China Northern MO, 1

As shown in the figure, given $\vartriangle ABC$ with $\angle B$, $\angle C$ acute angles, $AD \perp BC$, $DE \perp AC$, $M$ midpoint of $DE$, $AM \perp BE$. Prove that $\vartriangle ABC$ is isosceles. [img]https://cdn.artofproblemsolving.com/attachments/a/8/f553c33557979f6f7b799935c3bde743edcc3c.png[/img]

2012 Dutch IMO TST, 5

Let $\Gamma$ be the circumcircle of the acute triangle $ABC$. The angle bisector of angle $ABC$ intersects $AC$ in the point $B_1$ and the short arc $AC$ of $\Gamma$ in the point $P$. The line through $B_1$ perpendicular to $BC$ intersects the short arc $BC$ of $\Gamma$ in $K$. The line through $B$ perpendicular to $AK$ intersects $AC$ in $L$. Prove that $K, L$ and $P$ lie on a line.

1998 USAMTS Problems, 5

Tags: geometry
In the figure on the right, $ABCD$ is a con­vex quadrilateral, $K, L, M,$ and $N$ are the mid­points of its sides, and $PQRS$ is the quadrilateral formed by the intersections of $AK, BL, CM,$ and $DN$. Determine the area of quadrilateral $PQRS$ if the area of quadrilateral $ABCD$ is $3000$, and the areas of quadrilaterals $AMQP$ and $CKSR$ are $513$ and $388$, respectively. [asy] defaultpen(linewidth(0.7)+fontsize(10));size(200); pair A=origin, B=(14,0), C=(13,10), D=(2,9), K=midpoint(C--D), L=midpoint(D--A), M=midpoint(A--B), N=midpoint(B--C), P=intersectionpoint(B--L, A--K), Q=intersectionpoint(B--L, C--M), R=intersectionpoint(C--M, D--N), S=intersectionpoint(D--N, A--K); draw(K--A--B--C--D--A^^D--N^^B--L^^C--M); pair point=(7,6); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$S$", S, dir(160)*dir(point--S)); label("$R$", R, dir(190)*dir(point--R)); label("$Q$", Q, dir(180)*dir(point--Q)); label("$P$", P, dir(180)*dir(point--P)); label("$K$", K, dir(point--K)); label("$L$", L, dir(point--L)); label("$M$", M, dir(point--M)); label("$N$", N, dir(point--N));[/asy]

2001 Flanders Math Olympiad, 3

In a circle we enscribe a regular $2001$-gon and inside it a regular $667$-gon with shared vertices. Prove that the surface in the $2001$-gon but not in the $667$-gon is of the form $k.sin^3\left(\frac{\pi}{2001}\right).cos^3\left(\frac{\pi}{2001}\right)$ with $k$ a positive integer. Find $k$.

1975 Chisinau City MO, 110

Prove that any centrally symmetric convex octagon has a diagonal passing through the center of symmetry that is not parallel to any of its sides.

Kyiv City MO Seniors Round2 2010+ geometry, 2012.11.4

The circles ${{w} _ {1}}$ and ${{w} _ {2}}$ intersect at points $P$ and $Q$. Let $AB$ and $CD$ be parallel diameters of circles ${ {w} _ {1}}$ and ${{w} _ {2}} $, respectively. In this case, none of the points $A, B, C, D$ coincides with either $P$ or $Q$, and the points lie on the circles in the following order: $A, B, P, Q$ on the circle ${{w} _ {1} }$ and $C, D, P, Q$ on the circle ${{w} _ {2}} $. The lines $AP$ and $BQ$ intersect at the point $X$, and the lines $CP$ and $DQ$ intersect at the point $Y, X \ne Y$. Prove that all lines $XY$ for different diameters $AB$ and $CD$ pass through the same point or are all parallel. (Serdyuk Nazar)

2020-21 IOQM India, 4

Tags: geometry , rectangle , area
Let $ABCD$ be a rectangle in which $AB + BC + CD = 20$ and $AE = 9$ where $E$ is the midpoint of the side $BC$. Find the area of the rectangle.

Russian TST 2017, P3

Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.

2023 SAFEST Olympiad, 4

Tags: geometry
Let $ABC$ be a triangle with incenter $I$ and let $AI$ meet $BC$ at $D$. Let $E$ be a point on the segment $AC$, such that $CD=CE$ and let $F$ be on the segment $AB$ such that $BF=BD$. Let $(CEI) \cap (DFI)=P \neq I$ and $(BFI) \cap (DEI)=Q \neq I$. Prove that $PQ \perp BC$. [i]Proposed by Leonardo Franchi, Italy[/i]

1979 IMO Longlists, 20

Show that for any vectors $a, b$ in Euclidean space, \[|a \times b|^3 \leq \frac{3 \sqrt 3}{8} |a|^2 |b|^2 |a-b|^2\] Remark. Here $\times$ denotes the vector product.

1994 AIME Problems, 8

The points $(0,0),$ $(a,11)$, and $(b,37)$ are the vertices of an equilateral triangle. Find the value of $ab$.

1991 China Team Selection Test, 1

Tags: geometry
We choose 5 points $A_1, A_2, \ldots, A_5$ on a circumference of radius 1 and centre $O.$ $P$ is a point inside the circle. Denote $Q_i$ as the intersection of $A_iA_{i+2}$ and $A_{i+1}P$, where $A_7 = A_2$ and $A_6 = A_1.$ Let $OQ_i = d_i, i = 1,2, \ldots, 5.$ Find the product $\prod^5_{i=1} A_iQ_i$ in terms of $d_i.$

1993 All-Russian Olympiad, 4

Prove that any two rectangular prisms with equal volumes can be placed in a space such that any horizontal plain that intersects one of the prisms will intersect the other forming a polygon with the same area.