This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020/2021 Tournament of Towns, P7

Tags: geometry
There is a convex quadrangle $ABCD$ such that no three of its sides can form a triangle. Prove that: [list=a] [*]one of its angles is not greater than $60^\circ{}$; [*]one of its angles is at least $120^\circ$. [/list] [i]Maxim Didin[/i]

2023 Canadian Junior Mathematical Olympiad, 5

Tags: geometry
An acute triangle is a triangle that has all angles less than $90^{\circ}$ ($90^{\circ}$ is a Right Angle). Let $ABC$ be an acute triangle with altitudes $AD$, $BE$, and $CF$ meeting at $H$. The circle passing through points $D$, $E$, and $F$ meets $AD$, $BE$, and $CF$ again at $X$, $Y$, and $Z$ respectively. Prove the following inequality: $$\frac{AH}{DX}+\frac{BH}{EY}+\frac{CH}{FZ} \geq 3.$$

2006 Paraguay Mathematical Olympiad, 2

Tags: geometry
Consider all right triangles with integer sides such that the length of the hypotenuse and one of the two sides are consecutive. How many such triangles exist?

2023 Brazil Team Selection Test, 4

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

2006 Austrian-Polish Competition, 9

We have an 8x8 chessboard with 64 squares. Then we have 3x1 dominoes which cover exactly 3 squares. Such dominoes can only be moved parallel to the borders of the chessboard and also only if the passing squares are free. If no dominoes can be moved, then the position is called stable. a. Find the smalles number of covered squares neccessary for a stable position. b. Prove: There exist a stable position with only one square uncovered. c. Find all Squares which are uncoverd in at least one position of b).

1970 AMC 12/AHSME, 2

Tags: geometry , ratio
A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is: $\textbf{(A) }\frac{4}{\pi}\qquad\textbf{(B) }\frac{\pi}{\sqrt{2}}\qquad\textbf{(C) }\frac{4}{1}\qquad\textbf{(D) }\frac{\sqrt{2}}{\pi}\qquad \textbf{(E) }\frac{\pi}{4}$

2019 Romania National Olympiad, 2

Find all natural numbers which are the cardinal of a set of nonzero Euclidean vectors whose sum is $ 0, $ the sum of any two of them is nonzero, and their magnitudes are equal.

2009 Regional Competition For Advanced Students, 3

Tags: geometry
Let $ D$, $ E$, $ F$ be the feet of the altitudes wrt sides $ BC$, $ CA$, $ AB$ of acute-angled triangle $ \triangle ABC$, respectively. In triangle $ \triangle CFB$, let $ P$ be the foot of the altitude wrt side $ BC$. Define $ Q$ and $ R$ wrt triangles $ \triangle ADC$ and $ \triangle BEA$ analogously. Prove that lines $ AP$, $ BQ$, $ CR$ don't intersect in one common point.

1982 AMC 12/AHSME, 18

In the adjoining figure of a rectangular solid, $\angle DHG=45^\circ$ and $\angle FHB=60^\circ$. Find the cosine of $\angle BHD$. [asy] size(200); import three;defaultpen(linewidth(0.7)+fontsize(10)); currentprojection=orthographic(1/3+1/10,1-1/10,1/3); real r=sqrt(3); triple A=(0,0,r), B=(0,r,r), C=(1,r,r), D=(1,0,r), E=O, F=(0,r,0), G=(1,0,0), H=(1,r,0); draw(D--G--H--D--A--B--C--D--B--F--H--B^^C--H); draw(A--E^^G--E^^F--E, linetype("4 4")); label("$A$", A, N); label("$B$", B, dir(0)); label("$C$", C, N); label("$D$", D, W); label("$E$", E, NW); label("$F$", F, S); label("$G$", G, W); label("$H$", H, S); triple H45=(1,r-0.15,0.1), H60=(1-0.05, r, 0.07); label("$45^\circ$", H45, dir(125), fontsize(8)); label("$60^\circ$", H60, dir(25), fontsize(8));[/asy] $\textbf {(A) } \frac{\sqrt{3}}{6} \qquad \textbf {(B) } \frac{\sqrt{2}}{6} \qquad \textbf {(C) } \frac{\sqrt{6}}{3} \qquad \textbf {(D) } \frac{\sqrt{6}}{4} \qquad \textbf {(E) } \frac{\sqrt{6}-\sqrt{2}}{4}$

2023 USA EGMO Team Selection Test, 4

Tags: geometry
Let $ABC$ be a triangle with $AB+AC=3BC$. The $B$-excircle touches side $AC$ and line $BC$ at $E$ and $D$, respectively. The $C$-excircle touches side $AB$ at $F$. Let lines $CF$ and $DE$ meet at $P$. Prove that $\angle PBC = 90^{\circ}$. [i]Ray Li[/i]

2010 IFYM, Sozopol, 4

Tags: square , geometry
Let $ABCD$ be a square with side 1. On the sides $BC$ and $CD$ are chosen points $P$ and $Q$ where $AP$ and $AQ$ intersect the diagonal $BD$ in points $M$ and $N$ respectively. If $DQ\neq BP$ and the line through $A$ and the intersection point of $MQ$ and $NP$ is perpendicular to $PQ$, prove that $\angle MAN=45^\circ$.

2015 China Team Selection Test, 4

Prove that : For each integer $n \ge 3$, there exists the positive integers $a_1<a_2< \cdots <a_n$ , such that for $ i=1,2,\cdots,n-2 $ , With $a_{i},a_{i+1},a_{i+2}$ may be formed as a triangle side length , and the area of the triangle is a positive integer.

VMEO III 2006 Shortlist, G5

Tags: geometry , circles
Prove that there exists a family of rational circles with a distinct radius $\{(O_n)\}$ $(n = 1,2,3,...)$ satisfying the property that for all natural indices $n$, circles $(O_n)$,$( O_{n+1})$, $(O_{n+2})$,$(O_{n+3})$ are externally tangent like in the figure. [img]https://cdn.artofproblemsolving.com/attachments/b/f/5655e677e7c4f203b63afe82c50088e9ef97f5.png[/img]

2007 Germany Team Selection Test, 1

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

Maryland University HSMC part II, 2001

[b]p1.[/b] A band of pirates unloaded some number of treasure chests from their ship. The number of pirates was between $60$ and $69$ (inclusive). Each pirate handled exactly $11$ treasure chests, and each treasure chest was handled by exactly $7$ pirates. Exactly how many treasure chests were there? Show that your answer is the only solution. [b]p2.[/b] Let $a$ and $b$ be the lengths of the legs of a right triangle, let $c$ be the length of the hypotenuse, and let $h$ be the length of the altitude drawn from the vertex of the right angle to the hypotenuse. Prove that $c+h>a+b$. [b]p3.[/b] Prove that $$\frac{1}{70}< \frac{1}{2} \frac{3}{4} \frac{5}{6} ... \frac{2001}{2002} < \frac{1}{40}$$ [b]p4.[/b] Given a positive integer $a_1$ we form a sequence $a_1 , a_2 , a _3,...$ as follows: $a_2$ is obtained from $a_1$ by adding together the digits of $a_1$ raised to the $2001$-st power; $a_3$ is obtained from $a_2$ using the same rule, and so on. For example, if $a_1 =25$, then $a_2 =2^{2001}+5^{2001}$, which is a $1399$-digit number containing $106$ $0$'s, $150$ $1$'s, 4124$ 42$'s, $157$ $3$'s, $148$ $4$'s, $141$ $5$'s, $128$ $6$'s, $1504 47$'s, $152$ $8$'s, $143$ $9$'s. So $a_3 = 106 \times 0^{2001}+ 150 \times 1^{2001}+ 124 \times 2^{2001}+ 157 \times 3^{2001}+ ...+ 143 \times 9^{2001}$ which is a $1912$-digit number, and so forth. Prove that if any positive integer $a_1$ is chosen to start the sequence, then there is a positive integer $M$ (which depends on $a_1$ ) that is so large that $a_n < M$ for all $n=1,2,3,...$ [b]p5.[/b] Let $P(x)$ be a polynomial with integer coefficients. Suppose that there are integers $a$, $b$, and $c$ such that $P(a)=0$, $P(b)=1$, and $P(c)=2$. Prove that there is at most one integer $n$ such that $P(n)=4$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Taiwan TST Round 3, 2

Given a triangle $ABC$, we construct a circle $\Gamma$ through $B,C$ with center $O$. $\Gamma$ intersects $AC, AB$ at points $D$, $E$, respectively($D$, $E$ are distinct from $B$ and $C$). Let the intersection of $BD$ and $CE$ be $F$. Extend $OF$ so that it intersects the circumcircle of $\triangle ABC$ at $P$. Show that the incenters of triangles $PBD$ and $PCE$ coincide.

2011 Balkan MO Shortlist, G4

Given a triangle $ABC$, the line parallel to the side $BC$ and tangent to the incircle of the triangle meets the sides $AB$ and $AC$ at the points $A_1$ and $A_2$ , the points $B_1, B_2$ and $C_1, C_2$ are de ned similarly. Show that $$AA_1 \cdot AA_2 + BB_1 \cdot BB_2 + CC_1 \cdot CC_2 \ge \frac19 (AB^2 + BC^2 + CA^2)$$

2002 Tuymaada Olympiad, 2

Points on the sides $ BC $, $ CA $ and $ AB $ of the triangle $ ABC $ are respectively $ A_1 $, $ B_1 $ and $ C_1 $ such that $ AC_1: C_1B = BA_1: A_1C = CB_1: B_1A = 2: 1 $. Prove that if triangle $ A_1B_1C_1 $ is equilateral, then triangle $ ABC $ is also equilateral.

Kvant 2020, M2604

Tags: geometry
Let $ABC$ be a triangle with a right angle at $C$. Let $I$ be the incentre of triangle $ABC$, and let $D$ be the foot of the altitude from $C$ to $AB$. The incircle $\omega$ of triangle $ABC$ is tangent to sides $BC$, $CA$, and $AB$ at $A_1$, $B_1$, and $C_1$, respectively. Let $E$ and $F$ be the reflections of $C$ in lines $C_1A_1$ and $C_1B_1$, respectively. Let $K$ and $L$ be the reflections of $D$ in lines $C_1A_1$ and $C_1B_1$, respectively. Prove that the circumcircles of triangles $A_1EI$, $B_1FI$, and $C_1KL$ have a common point.

2018 PUMaC Geometry A, 2

Tags: geometry
Let $\overline{AD}$ be a diameter of a circle. Let point $B$ be on the circle, point $C$ on $\overline{AD}$ such that $A, B, C$ form a right triangle at $C$. The value of the hypotenuse of the triangle is $4$ times the square root of its area. If $\overline{BC}$ has length $30$, what is the length of the radius of the circle?

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle, and let $D$ be the projection of $A$ on $BC$. Let $M,N$ be the midpoints of $AB$ and $AC$ respectively. Let $\Gamma_1$ and $\Gamma_2$ be the circumcircles of $\triangle BDM$ and $\triangle CDN$ respectively, and let $K$ be the other intersection point of $\Gamma_1$ and $\Gamma_2$. Let $P$ be an arbitrary point on $BC$ and $E,F$ are on $AC$ and $AB$ respectively such that $PEAF$ is a parallelogram. Prove that if $MN$ is a common tangent line of $\Gamma_1$ and $\Gamma_2$, then $K,E,A,F$ are concyclic.

I Soros Olympiad 1994-95 (Rus + Ukr), 10.6

The radius of the circle inscribed in triangle $ABC$ is equal to $r$, and the radius of the circle tangent to the segment $BC$ and the extensions of sides $AB$ and $AC$ (the exscribed circle corresponding to angle $A$) is equal to $R$. A circle with radius $x < r$ is inscribed in angle $\angle BAC$. Tangents to this circles passing through points $B$ and $C$ and different from $BA$ and $AC$ intersect at point $A'$. Let $y$ be the radius of the circle inscribed in triangle $BCK$. Find the greatest value of the sum $x + y$ as x changes from $0$ to $r$. (In this case, it is necessary to prove that this largest value is the same in any triangle with given $r$ and $R$).

2015 Indonesia MO Shortlist, G7

Given an acute triangle $ABC$. $\Gamma _{B}$ is a circle that passes through $AB$, tangent to $AC$ at $A$ and centered at $O_{B}$. Define $\Gamma_C$ and $O_C$ the same way. Let the altitudes of $\triangle ABC$ from $B$ and $C$ meets the circumcircle of $\triangle ABC$ at $X$ and $Y$, respectively. Prove that $A$, the midpoint of $XY$ and the midpoint of $O_{B}O_{C}$ is collinear.

2018 Spain Mathematical Olympiad, 4

Points on a spherical surface with radius $4$ are colored in $4$ different colors. Prove that there exist two points with the same color such that the distance between them is either $4\sqrt{3}$ or $2\sqrt{6}$. (Distance is Euclidean, that is, the length of the straight segment between the points)

2017 Mexico National Olympiad, 3

Let $ABC$ be an acute triangle with orthocenter $H$. The circle through $B, H$, and $C$ intersects lines $AB$ and $AC$ at $D$ and $E$ respectively, and segment $DE$ intersects $HB$ and $HC$ at $P$ and $Q$ respectively. Two points $X$ and $Y$, both different from $A$, are located on lines $AP$ and $AQ$ respectively such that $X, H, A, B$ are concyclic and $Y, H, A, C$ are concyclic. Show that lines $XY$ and $BC$ are parallel.