Found problems: 25757
2006 Bulgaria Team Selection Test, 3
[b]Problem 3.[/b] Two points $M$ and $N$ are chosen inside a non-equilateral triangle $ABC$ such that $\angle BAM=\angle CAN$, $\angle ABM=\angle CBN$ and \[AM\cdot AN\cdot BC=BM\cdot BN\cdot CA=CM\cdot CN\cdot AB=k\] for some real $k$. Prove that:
[b]a)[/b] We have $3k=AB\cdot BC\cdot CA$.
[b]b)[/b] The midpoint of $MN$ is the medicenter of $\triangle ABC$.
[i]Remark.[/i] The [b]medicenter[/b] of a triangle is the intersection point of the three medians:
If $A_{1}$ is midpoint of $BC$, $B_{1}$ of $AC$ and $C_{1}$ of $AB$, then $AA_{1}\cap BB_{1}\cap CC_{1}= G$, and $G$ is called medicenter of triangle $ABC$.
[i] Nikolai Nikolov[/i]
2021 China Team Selection Test, 6
Proof that there exist constant $\lambda$, so that for any positive integer $m(\ge 2)$, and any lattice triangle $T$ in the Cartesian coordinate plane, if $T$ contains exactly one $m$-lattice point in its interior(not containing boundary), then $T$ has area $\le \lambda m^3$.
PS. lattice triangles are triangles whose vertex are lattice points; $m$-lattice points are lattice points whose both coordinates are divisible by $m$.
2019 Tournament Of Towns, 4
Isosceles triangles with a fixed angle $\alpha$ at the vertex opposite to the base are being inscribed into a rectangle $ABCD$ so that this vertex lies on the side $BC$ and the vertices of the base lie on the sides $AB$ and $CD$. Prove that the midpoints of the bases of all such triangles coincide.
(Igor Zhizhilkin)
1949-56 Chisinau City MO, 23
Inside the angle $ABC$ of $60^o$, point $O$ is selected, which is located at distances from the sides of the angle $a$ and $b$, respectively. Determine the distance from the top of the angle to this point.
1970 Miklós Schweitzer, 3
The traffic rules in a regular triangle allow one to move only along segments parallel to one of the altitudes of the triangle. We define the distance between two points of the triangle to be the length of the shortest such path between them. Put $ \binom{n\plus{}1}{2}$ points into the triangle in such a way that the minimum distance between pairs of points is maximal.
[i]L. Fejes-Toth[/i]
1954 AMC 12/AHSME, 45
In a rhombus, $ ABCD$, line segments are drawn within the rhombus, parallel to diagonal $ BD$, and terminated in the sides of the rhombus. A graph is drawn showing the length of a segment as a function of its distance from vertex $ A$. The graph is:
$ \textbf{(A)}\ \text{A straight line passing through the origin.} \\
\textbf{(B)}\ \text{A straight line cutting across the upper right quadrant.} \\
\textbf{(C)}\ \text{Two line segments forming an upright V.} \\
\textbf{(D)}\ \text{Two line segments forming an inverted V.} \\
\textbf{(E)}\ \text{None of these.}$
LMT Guts Rounds, 2019 S
[u]Round 9[/u]
[b]p25.[/b] Circle $\omega_1$ has radius $1$ and diameter $AB$. Let circle $\omega_2$ be a circle withm aximum radius such that it is tangent to $AB$ and internally tangent to $\omega_1$. A point $C$ is then chosen such that $\omega_2$ is the incircle of triangle $ABC$. Compute the area of $ABC$.
[b]p26.[/b] Two particles lie at the origin of a Cartesian plane. Every second, the first particle moves from its initial position $(x, y)$ to one of either $(x +1, y +2)$ or $(x -1, y -2)$, each with probability $0.5$. Likewise, every second the second particle moves from it’s initial position $(x, y)$ to one of either $(x +2, y +3)$ or $(x -2, y -3)$, each with probability $0.5$. Let $d$ be the distance distance between the two particles after exactly one minute has elapsed. Find the expected value of $d^2$.
[b]p27.[/b] Find the largest possible positive integer $n$ such that for all positive integers $k$ with $gcd (k,n) = 1$, $k^2 -1$ is a multiple of $n$.
[u]Round 10[/u]
[b]p28.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 13$, $BC = 14$, $C A = 15$. Let $H$ be the orthcenter of $\vartriangle ABC$, $M$ be the midpoint of segment $BC$, and $F$ be the foot of altitude from $C$ to $AB$. Let $K$ be the point on line $BC$ such that $\angle MHK = 90^o$. Let $P$ be the intersection of $HK$ and $AB$. Let $Q$ be the intersection of circumcircle of $\vartriangle FPK$ and $BC$. Find the length of $QK$.
[b]p29.[/b] Real numbers $(x, y, z)$ are chosen uniformly at random from the interval $[0,2\pi]$. Find the probability that $$\cos (x) \cdot \cos (y)+ \cos(y) \cdot \cos (z)+ \cos (z) \cdot \cos(x) + \sin (x) \cdot \sin (y)+ \sin (y) \cdot \sin (z)+ \sin (z) \cdot \sin (x)+1$$ is positive.
[b]p30.[/b] Find the number of positive integers where each digit is either $1$, $3$, or $4$, and the sum of the digits is $22$.
[u]Round 11[/u]
[b]p31.[/b] In $\vartriangle ABC$, let $D$ be the point on ray $\overrightarrow{CB}$ such that $AB = BD$ and let $E$ be the point on ray $\overrightarrow{AC}$ such that $BC =CE$. Let $L$ be the intersection of $AD$ and circumcircle of $\vartriangle ABC$. The exterior angle bisector of $\angle C$ intersects $AD$ at $K$ and it follows that $AK = AB +BC +C A$. Given that points $B$, $E$, and $L$ are collinear, find $\angle C AB$.
[b]p32.[/b] Let $a$ be the largest root of the equation $x^3 -3x^2 +1 0$. Find the remainder when $\lfloor a^{2019} \rfloor$ is divided by $17$.
[b]p33.[/b] For all $x, y \in Q$, functions $f , g ,h : Q \to Q$ satisfy $f (x + g (y)) = g (h( f (x)))+ y$. If $f (6)=2$, $g\left( \frac12 \right) = 2$, and $h \left( \frac72 \right)= 2$, find all possible values of $f (2019)$.
[u]Round 12[/u]
[b]p34.[/b] An $n$-polyomino is formed by joining $n$ unit squares along their edges. A free polyomino is a polyomino considered up to congruence. That is, two free polyominos are the same if there is a combination of translations, rotations, and reflections that turns one into the other. Let $P(n)$ be the number of free $n$-polyominos. For example, $P(3) = 2$ and $P(4) = 5$. Estimate $P(20)+P(19)$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$
[b]p35.[/b] Estimate $$\sum^{2019}_{k=1} sin(k),$$
where $k$ is measured in radians. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $\max \, (0,15-10 \cdot |E - A|)$ .
[b]p36.[/b] For a positive integer $n$, let $r_{10}(n)$ be the number of $10$-tuples of (not necessarily positive) integers $(a_1,a_2,... ,a_9,a_{10})$ such that $$a^2_1 +a^2_2+ ...+a^2_9+a^2_{10}= n.$$ Estimate $r_{10}(20)+r_{10}(19)$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be$$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165997p28809441]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3166012p28809547]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 USA Team Selection Test, 1
Let $ABC$ be a non-isosceles triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$, respectively. Denote by $M$ the midpoint of $\overline{BC}$. Let $Q$ be a point on the incircle such that $\angle AQD = 90^{\circ}$. Let $P$ be the point inside the triangle on line $AI$ for which $MD = MP$. Prove that either $\angle PQE = 90^{\circ}$ or $\angle PQF = 90^{\circ}$.
[i]Proposed by Evan Chen[/i]
2020 USOJMO, 3
An empty $2020 \times 2020 \times 2020$ cube is given, and a $2020 \times 2020$ grid of square unit cells is drawn on each of its six faces. A [i]beam[/i] is a $1 \times 1 \times 2020$ rectangular prism. Several beams are placed inside the cube subject to the following conditions:
[list=]
[*]The two $1 \times 1$ faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are $3 \cdot {2020}^2$ possible positions for a beam.)
[*]No two beams have intersecting interiors.
[*]The interiors of each of the four $1 \times 2020$ faces of each beam touch either a face of the cube or the interior of the face of another beam.
[/list]
What is the smallest positive number of beams that can be placed to satisfy these conditions?
[i]Proposed by Alex Zhai[/i]
2014 Harvard-MIT Mathematics Tournament, 2
Point $P$ and line $\ell$ are such that the distance from $P$ to $\ell$ is $12$. Given that $T$ is a point on $\ell$ such that $PT = 13$, find the radius of the circle passing through $P$ and tangent to $\ell$ at $T$.
1965 Polish MO Finals, 5
Points $ A_1 $, $ B_1 $, $ C_1 $ divide respectively the sides $ BC $, $ CA $, $ AB $ of the triangle $ ABC $ in the ratios $ k_1 $, $ k_2 $, $ k_3 $. Calculate the ratio of the areas of triangles $ A_1B_1C_1 $ and $ ABC $.
Estonia Open Senior - geometry, 2002.2.3
Let $ABCD$ be a rhombus with $\angle DAB = 60^o$. Let $K, L$ be points on its sides $AD$ and $DC$ and $M$ a point on the diagonal $AC$ such that $KDLM$ is a parallelogram. Prove that triangle $BKL$ is equilateral.
2011 Pre-Preparation Course Examination, 2
We say that a covering of a $m\times n$ rectangle with dominos has a wall if there exists a horizontal or vertical line that splits the rectangle into two smaller rectangles and doesn't cut any of the dominos. prove that if these three conditions are satisfied:
[b]a)[/b] $mn$ is an even number
[b]b)[/b] $m\ge 5$ and $n\ge 5$
[b]c)[/b] $(m,n)\neq(6,6)$
then we can cover the rectangle with dominos in such a way that we have no walls. (20 points)
1982 Dutch Mathematical Olympiad, 2
In a triangle $ ABC$, $ M$ is the midpoint of $ AB$ and $ P$ an arbitrary point on side $ AC$. Using only a straight edge, construct point $ Q$ on $ BC$ such that $ P$ and $ Q$ are at equal distance from $ CM$.
1969 Bulgaria National Olympiad, Problem 6
It is given that $r=\left(3\left(\sqrt6-1\right)-4\left(\sqrt3+1\right)+5\sqrt2\right)R$ where $r$ and $R$ are the radii of the inscribed and circumscribed spheres in a regular $n$-angled pyramid. If it is known that the centers of the spheres given coincide,
(a) find $n$;
(b) if $n=3$ and the lengths of all edges are equal to a find the volumes of the parts from the pyramid after drawing a plane $\mu$, which intersects two of the edges passing through point $A$ respectively in the points $E$ and $F$ in such a way that $|AE|=p$ and $|AF|=q$ $(p<a,q<a)$, intersects the extension of the third edge behind opposite of the vertex $A$ wall in the point $G$ in such a way that $|AG|=t$ $(t>a)$.
1999 Vietnam Team Selection Test, 2
Let a triangle $ABC$ inscribed in circle $\Gamma$ be given. Circle $\Theta$ lies in angle $Â$ of triangle and touches sides $AB, AC$ at $M_1, N_1$ and touches internally $\Gamma$ at $P_1$. The points $M_2, N_2, P_2$ and $M_3, N_3, P_3$ are defined similarly to angles $B$ and $C$ respectively. Show that $M_1N_1, M_2N_2$ and $M_3N_3$ intersect each other at their midpoints.
2007 Vietnam National Olympiad, 3
Let ABCD be trapezium that is inscribed in circle (O) with larger edge BC. P is a point lying outer segment BC. PA cut (O) at N(that means PA isn't tangent of (O)), the circle with diameter PD intersect (O) at E, DE meet BC at N. Prove that MN always pass through a fixed point.
1996 Italy TST, 3
3.Let ABCD be a parallelogram with side AB longer than AD and acute angle
$\angle DAB$. The bisector of ∠DAB meets side CD at L and line BC at K. If O is
the circumcenter of triangle LCK, prove that the points B,C,O,D lie on a circle.
2013 Tournament of Towns, 2
On the sides of triangle $ABC$, three similar triangles are constructed with triangle $YBA$ and triangle $ZAC$ in the exterior and triangle $XBC$ in the interior. (Above, the vertices of the triangles are ordered so that the similarities take vertices to corresponding vertices, for example, the similarity between triangle $YBA$ and triangle $ZAC$ takes $Y$ to $Z, B$ to $A$ and $A$ to $C$). Prove that $AYXZ$ is a parallelogram
1998 Argentina National Olympiad, 5
Let $ABC$ a right isosceles triangle with hypotenuse $AB=\sqrt2$ . Determine the positions of the points $X,Y,Z$ on the sides $BC,CA,AB$ respectively so that the triangle $XYZ$ is isosceles, right, and with minimum area.
2001 All-Russian Olympiad Regional Round, 8.3
All sides of a convex pentagon are equal, and all angles are different. Prove that the maximum and minimum angles are adjacent to the same side of the pentagon.
1980 IMO Longlists, 1
Let $\alpha, \beta$ and $\gamma$ denote the angles of the triangle $ABC$. The perpendicular bisector of $AB$ intersects $BC$ at the point $X$, the perpendicular bisector of $AC$ intersects it at $Y$. Prove that $\tan(\beta) \cdot \tan(\gamma) = 3$ implies $BC= XY$ (or in other words: Prove that a sufficient condition for $BC = XY$ is $\tan(\beta) \cdot \tan(\gamma) = 3$). Show that this condition is not necessary, and give a necessary and sufficient condition for $BC = XY$.
2024 ELMO Shortlist, G3
Let $ABC$ be a triangle, and let $\omega_1,\omega_2$ be centered at $O_1$, $O_2$ and tangent to line $BC$ at $B$, $C$ respectively. Let line $AB$ intersect $\omega_1$ again at $X$ and let line $AC$ intersect $\omega_2$ again at $Y$. If $Q$ is the other intersection of the circumcircles of triangles $ABC$ and $AXY$, then prove that lines $AQ$, $BC$, and $O_1O_2$ either concur or are all parallel.
[i]Advaith Avadhanam[/i]
2015 239 Open Mathematical Olympiad, 5
The nodes of a three dimensional unit cube lattice with all three coordinates even are coloured red and blue otherwise. A convex polyhedron with all vertices red is given. Assuming the number of red points on its border is $n$. How many blue vertices can be on its border?
Geometry Mathley 2011-12, 8.2
Let $ABC$ be a triangle, $d$ a line passing through $A$ and parallel to $BC$. A point $M$ distinct from $A$ is chosen on $d$. $I$ is the incenter of triangle $ABC, K,L$ are the the points of symmetry of $M$ about $IB, IC$. Let $BK$ meet $CL$ at $N$. Prove that $AN$ is tangent to circumcircle of triangle $ABC$.
Đỗ Thanh Sơn