This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 Indonesia TST, G

Given an acute triangle $ABC$ with circumcenter $O$. The circumcircle of $BCH$ and a circle with diameter of $AC$ intersect at $P (P \neq C)$. A point $Q$ on segment of $PC$ such that $PB = PQ$. Prove that $\angle ABC = \angle AQP$

2021 Irish Math Olympiad, 10

Let $P_{1}, P_{2}, \ldots, P_{2021}$ be 2021 points in the quarter plane $\{(x, y): x \geq 0, y \geq 0\}$. The centroid of these 2021 points lies at the point $(1,1)$. Show that there are two distinct points $P_{i}, P_{j}$ such that the distance from $P_{i}$ to $P_{j}$ is no more than $\sqrt{2} / 20$.

2004 Harvard-MIT Mathematics Tournament, 7

We have a polyhedron such that an ant can walk from one vertex to another, traveling only along edges, and traversing every edge exactly once. What is the smallest possible total number of vertices, edges, and faces of this polyhedron?

2010 Today's Calculation Of Integral, 528

Consider a function $ f(x)\equal{}xe^{\minus{}x^3}$ defined on any real numbers. (1) Examine the variation and convexity of $ f(x)$ to draw the garph of $ f(x)$. (2) For a positive number $ C$, let $ D_1$ be the region bounded by $ y\equal{}f(x)$, the $ x$-axis and $ x\equal{}C$. Denote $ V_1(C)$ the volume obtained by rotation of $ D_1$ about the $ x$-axis. Find $ \lim_{C\rightarrow \infty} V_1(C)$. (3) Let $ M$ be the maximum value of $ y\equal{}f(x)$ for $ x\geq 0$. Denote $ D_2$ the region bounded by $ y\equal{}f(x)$, the $ y$-axis and $ y\equal{}M$. Find the volume $ V_2$ obtained by rotation of $ D_2$ about the $ y$-axis.

2011 Sharygin Geometry Olympiad, 7

Point $O$ is the circumcenter of acute-angled triangle $ABC$, points $A_1,B_1, C_1$ are the bases of its altitudes. Points $A', B', C'$ lying on lines $OA_1, OB_1, OC_1$ respectively are such that quadrilaterals $AOBC', BOCA', COAB'$ are cyclic. Prove that the circumcircles of triangles $AA_1A', BB_1B', CC_1C'$ have a common point.

2023 Sharygin Geometry Olympiad, 10.5

Tags: geometry
The incircle of a triangle $ABC$ touches $BC$ at point $D$. Let $M$ be the midpoint of arc $\widehat{BAC}$ of the circumcircle, and $P$, $Q$ be the projections of $M$ to the external bisectors of angles $B$ and $C$ respectively. Prove that the line $PQ$ bisects $AD$.

2023 Stanford Mathematics Tournament, R2

[b]p4.[/b] For how many three-digit multiples of $11$ in the form $\underline{abc}$ does the quadratic $ax^2 + bx + c$ have real roots? [b]p5.[/b] William draws a triangle $\vartriangle ABC$ with $AB =\sqrt3$, $BC = 1$, and $AC = 2$ on a piece of paper and cuts out $\vartriangle ABC$. Let the angle bisector of $\angle ABC$ meet $AC$ at point $D$. He folds $\vartriangle ABD$ over $BD$. Denote the new location of point $A$ as $A'$. After William folds $\vartriangle A'CD$ over $CD$, what area of the resulting figure is covered by three layers of paper? [b]p6.[/b] Compute $(1)(2)(3) + (2)(3)(4) + ... + (18)(19)(20)$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 AMC 8, 23

Tags: symmetry , geometry
Square $ABCD$ has sides of length 3. Segments $CM$ and $CN$ divide the square's area into three equal parts. How long is segment $CM$ ? [asy] pair A,B,C,D,M,N; A = (0,0); B = (0,3); C = (3,3); D = (3,0); M = (0,1); N = (1,0); draw(A--B--C--D--cycle); draw(M--C--N); label("$A$",A,SW); label("$M$",M,W); label("$B$",B,NW); label("$C$",C,NE); label("$D$",D,SE); label("$N$",N,S);[/asy] $ \text{(A)}\ \sqrt{10}\qquad\text{(B)}\ \sqrt{12}\qquad\text{(C)}\ \sqrt{13}\qquad\text{(D)}\ \sqrt{14}\qquad\text{(E)}\ \sqrt{15} $

2012 Thailand Mathematical Olympiad, 11

Let $\vartriangle ABC$ be an acute triangle, and let $P$ be the foot of altitude from $C$ to $AB$. Let $\omega$ be the circle with diameter $BC$. The tangents from $A$ to $\omega$ are drawn touching $\omega$ at $D$ and $E$. Lines $AD$ and $AE$ intersect line $BC$ at $M$ and $N$ respectively, so that $B$ lies between $M$ and $C$. Let $CP$ intersect $DE$ at $Q, ME$ intersect $ND$ at $R$, and let $QR$ intersect $BC$ at $S$. Show that $QS$ bisects $\angle DSE$

2003 USA Team Selection Test, 2

Tags: geometry , ratio
Let $ABC$ be a triangle and let $P$ be a point in its interior. Lines $PA$, $PB$, $PC$ intersect sides $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Prove that \[ [PAF]+[PBD]+[PCE]=\frac{1}{2}[ABC] \] if and only if $P$ lies on at least one of the medians of triangle $ABC$. (Here $[XYZ]$ denotes the area of triangle $XYZ$.)

2025 Kosovo National Mathematical Olympiad`, P3

Tags: geometry , area
On the side $AB$ of the parallelogram $ABCD$ we take the points $X$ and $Y$ such that the points $A$, $X$, $Y$ and $B$ appear in this order. The lines $DX$ and $CY$ intersect at the point $Z$. Suppose that the area of the triangle $\triangle XYZ$ is equal to the sum of the areas of the triangles $\triangle AXD$ and $\triangle CYB$. Prove that the area of the quadrilateral $XYCD$ is equal to $3$ times the area of the triangle $\triangle XYZ$.

1994 French Mathematical Olympiad, Problem 4

Find, with proof, the point $P$ in the interior of an acute-angled triangle $ABC$ for which $BL^2+CM^2+AN^2$ is a minimum, where $L,M,N$ are the feet of the perpendiculars from $P$ to $BC,CA,AB$ respectively. [i]Proposed by United Kingdom.[/i]

2000 Saint Petersburg Mathematical Olympiad, 10.2

Let $AA_1$ and $BB_1$ be the altitudes of acute angled triangle $ABC$. Points $K$ and $M$ are midpoints of $AB$ and $A_1B_1$ respectively. Segments $AA_1$ and $KM$ intersect at point $L$. Prove that points $A$, $K$, $L$ and $B_1$ are noncyclic. [I]Proposed by S. Berlov[/i]

2011 AIME Problems, 3

Let $L$ be the line with slope $\tfrac{5}{12}$ that contains the point $A=(24,-1)$, and let $M$ be the line perpendicular to line $L$ that contains the point $B=(5,6)$. The original coordinate axes are erased, and line $L$ is made the $x$-axis, and line $M$ the $y$-axis. In the new coordinate system, point $A$ is on the positive $x$-axis, and point $B$ is on the positive $y$-axis. The point $P$ with coordinates $(-14,27)$ in the original system has coordinates $(\alpha,\beta)$ in the new coordinate system. Find $\alpha+\beta$.

2018 Korea Winter Program Practice Test, 3

Denote $A_{DE}$ by the foot of perpendicular line from $A$ to line $DE$. Given concyclic points $A,B,C,D,E,F$, show that the three points determined by the lines $A_{FD}A_{DE}$ , $B_{DE}B_{EF}$ , $C_{EF}C_{FD}$, and the three points determined by the lines $D_{CA}D_{AB}$ , $E_{AB}E_{BC}$ , $F_{BC}F_{CA}$ are concyclic.

2019 Dutch BxMO TST, 2

Let $\Delta ABC$ be a triangle with an inscribed circle centered at $I$. The line perpendicular to $AI$ at $I$ intersects $\odot (ABC)$ at $P,Q$ such that, $P$ lies closer to $B$ than $C$. Let $\odot (BIP) \cap \odot (CIQ) =S$. Prove that, $SI$ is the angle bisector of $\angle PSQ$

1994 Vietnam Team Selection Test, 1

Given a parallelogram $ABCD$. Let $E$ be a point on the side $BC$ and $F$ be a point on the side $CD$ such that the triangles $ABE$ and $BCF$ have the same area. The diaogonal $BD$ intersects $AE$ at $M$ and intersects $AF$ at $N$. Prove that: [b]I. [/b] There exists a triangle, three sides of which are equal to $BM, MN, ND$. [b]II.[/b] When $E, F$ vary such that the length of $MN$ decreases, the radius of the circumcircle of the above mentioned triangle also decreases.

2008 Bulgaria Team Selection Test, 2

The point $P$ lies inside, or on the boundary of, the triangle $ABC$. Denote by $d_{a}$, $d_{b}$ and $d_{c}$ the distances between $P$ and $BC$, $CA$, and $AB$, respectively. Prove that $\max\{AP,BP,CP \} \ge \sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?

2000 Harvard-MIT Mathematics Tournament, 14

$ABCD$ is a cyclic quadrilateral inscribed in a circle of radius $5$, with $AB=6$, $BC=7$, $CD=8$. Find $AD$.

IV Soros Olympiad 1997 - 98 (Russia), 10.12

Two straight lines are given on a plane, intersecting at point $O$ at an angle $a$. Let $A$, $B$ and $C $ be three points on one of the lines, located on one side of$ O$ and following in the indicated order, $M$ be an arbitrary point on another line, different from $O$, Let $\angle AMB=\gamma$, $\angle BMC = \phi$. Consider the function $F(M) = ctg \gamma + ctg \phi$ . Prove that$ F(M)$ takes the smallest value on each of the rays into which $O$ divides the second straight line. (Each has its own.) Let us denote one of these smallest values by $q$, and the other by $p$. Prove that the exprseeion $\frac{p}{q}$ is independent of choice of points $A$, $B$ and $C$. Express this relationship in terms of $a$.

1990 National High School Mathematics League, 15

In pyramid $M-ABCD$, bottom surface $ABCD$ is a square. $MA=MC,MA\perp AB$. If the area of $\triangle AMD$ is $1$, find the maximum value of radius of sphere that can be put inside the pyramid.

2022 Bulgaria National Olympiad, 2

Let $ABC$ be an acute triangle and $M$ be the midpoint of $AB$. A circle through the points $B$ and $C$ intersects the segments $CM$ and $BM$ at points $P$ and $Q$ respectively. Point $K$ is symmetric to $P$ with respect to point $M$. The circumcircles of $\triangle AKM$ and $\triangle CQM$ intersect for the second time at $X$. The circumcircles of $\triangle AMC$ and $\triangle KMQ$ intersect for the second time at $Y$. The segments $BP$ and $CQ$ intersect at point $T$. Prove that the line $MT$ is tangent to the circumcircle of $\triangle MXY$.

2025 Belarusian National Olympiad, 10.3

Tags: geometry
Given two angles $ACT$ and $TCB$, where $A$, $C$ and $B$ lie on a line in that order. A circle $\alpha$ is inscribed in the first angle, and $\beta$ in the second. $\alpha$ is tangent to $AB$ and $CT$ at points $A$ and $E$, and $\beta$ is tangent to $AE$ and $BF$ at $B$ and $F \neq E$. Lines $AE$ and $BF$ intersect at $P$. Circumcircle $\omega$ of triangle $PEF$ intersects $\alpha$ and $\beta$ at $X$ and $Y$ respectively. Prove that $AX$ and $BY$ intersect on $\omega$. [i]Matsvei Zorka[/i]

2012 Portugal MO, 2

Tags: geometry
Let $[ABC]$ be a triangle. Points $D$, $E$, $F$ and $G$ are such $E$ and $F$ are on the lines $AC$ and $BC$, respectively, and $[ACFG]$ and $[BCED]$ are rhombus. Lines $AC$ and $BG$ meet at $H$; lines $BC$ and $AD$ meet at $I$; lines $AI$ and $BH$ meet at $J$. Prove that $[JICH]$ and $[ABJ]$ have equal area.

2015 Auckland Mathematical Olympiad, 2

A convex quadrillateral $ABCD$ is given and the intersection point of the diagonals is denoted by $O$. Given that the perimeters of the triangles $ABO, BCO, CDO,ADO$ are equal, prove that $ABCD$ is a rhombus.