This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2000 Harvard-MIT Mathematics Tournament, 1

How many different ways are there to paint the sides of a tetrahedron with exactly $4$ colors? Each side gets its own color, and two colorings are the same if one can be rotated to get the other.

2014 BmMT, Ind. Round

[b]p1.[/b] Compute $17^2 + 17 \cdot 7 + 7^2$. [b]p2.[/b] You have $\$1.17$ in the minimum number of quarters, dimes, nickels, and pennies required to make exact change for all amounts up to $\$1.17$. How many coins do you have? [b]p3.[/b] Suppose that there is a $40\%$ chance it will rain today, and a $20\%$ chance it will rain today and tomorrow. If the chance it will rain tomorrow is independent of whether or not it rained today, what is the probability that it will rain tomorrow? (Express your answer as a percentage.) [b]p4.[/b] A number is called boxy if the number of its factors is a perfect square. Find the largest boxy number less than $200$. [b]p5.[/b] Alice, Bob, Carl, and Dave are either lying or telling the truth. If the four of them make the following statements, who has the coin? [i]Alice: I have the coin. Bob: Carl has the coin. Carl: Exactly one of us is telling the truth. Dave: The person who has the coin is male.[/i] [b]p6.[/b] Vicky has a bag holding some blue and some red marbles. Originally $\frac23$ of the marbles are red. After Vicky adds $25$ blue marbles, $\frac34$ of the marbles are blue. How many marbles were originally in the bag? [b]p7.[/b] Given pentagon $ABCDE$ with $BC = CD = DE = 4$, $\angle BCD = 90^o$ and $\angle CDE = 135^o$, what is the length of $BE$? [b]p8.[/b] A Berkeley student decides to take a train to San Jose, stopping at Stanford along the way. The distance from Berkeley to Stanford is double the distance from Stanford to San Jose. From Berkeley to Stanford, the train's average speed is $15$ meters per second. From Stanford to San Jose, the train's average speed is $20$ meters per second. What is the train's average speed for the entire trip? [b]p9.[/b] Find the area of the convex quadrilateral with vertices at the points $(-1, 5)$, $(3, 8)$, $(3,-1)$, and $(-1,-2)$. [b]p10.[/b] In an arithmetic sequence $a_1$, $a_2$, $a_3$, $...$ , twice the sum of the first term and the third term is equal to the fourth term. Find $a_4/a_1$. [b]p11.[/b] Alice, Bob, Clara, David, Eve, Fred, Greg, Harriet, and Isaac are on a committee. They need to split into three subcommittees of three people each. If no subcommittee can be all male or all female, how many ways are there to do this? [b]p12.[/b] Usually, spaceships have $6$ wheels. However, there are more advanced spaceships that have $9$ wheels. Aliens invade Earth with normal spaceships, advanced spaceships, and, surprisingly, bicycles (which have $2$ wheels). There are $10$ vehicles and $49$ wheels in total. How many bicycles are there? [b]p13.[/b] If you roll three regular six-sided dice, what is the probability that the three numbers showing will form an arithmetic sequence? (The order of the dice does matter, but we count both $(1,3, 2)$ and $(1, 2, 3)$ as arithmetic sequences.) [b]p14.[/b] Given regular hexagon $ABCDEF$ with center $O$ and side length $6$, what is the area of pentagon $ABODE$? [b]p15.[/b] Sophia, Emma, and Olivia are eating dinner together. The only dishes they know how to make are apple pie, hamburgers, hotdogs, cheese pizza, and ice cream. If Sophia doesn't eat dessert, Emma is vegetarian, and Olivia is allergic to apples, how many di erent options are there for dinner if each person must have at least one dish that they can eat? [b]p16.[/b] Consider the graph of $f(x) = x^3 + x + 2014$. A line intersects this cubic at three points, two of which have $x$-coordinates $20$ and $14$. Find the $x$-coordinate of the third intersection point. [b]p17.[/b] A frustum can be formed from a right circular cone by cutting of the tip of the cone with a cut perpendicular to the height. What is the surface area of such a frustum with lower radius $8$, upper radius $4$, and height $3$? [b]p18.[/b] A quadrilateral $ABCD$ is de ned by the points $A = (2,-1)$, $B = (3, 6)$, $C = (6, 10)$ and $D = (5,-2)$. Let $\ell$ be the line that intersects and is perpendicular to the shorter diagonal at its midpoint. What is the slope of $\ell$? [b]p19.[/b] Consider the sequence $1$, $1$, $2$, $2$, $3$, $3$, $3$, $5$, $5$, $5$, $5$, $5$, $...$ where the elements are Fibonacci numbers and the Fibonacci number $F_n$ appears $F_n$ times. Find the $2014$th element of this sequence. (The Fibonacci numbers are defined as $F_1 = F_2 = 1$ and for $n > 2$, $F_n = F_{n-1}+F_{n-2}$.) [b]p20.[/b] Call a positive integer top-heavy if at least half of its digits are in the set $\{7, 8, 9\}$. How many three digit top-heavy numbers exist? (No number can have a leading zero.) PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 Korea Junior Math Olympiad, 4

Let $P$ be a point inside $\triangle ABC$. Let the perpendicular bisectors of $PA,PB,PC$ be $\ell_1,\ell_2,\ell_3$. Let $D =\ell_1 \cap \ell_2$ , $E=\ell_2 \cap \ell_3$, $F=\ell_3 \cap \ell_1$. If $A,B,C,D,E,F$ lie on a circle, prove that $C, P,D$ are collinear.

2011 Tournament of Towns, 2

Passing through the origin of the coordinate plane are $180$ lines, including the coordinate axes, which form $1$ degree angles with one another at the origin. Determine the sum of the x-coordinates of the points of intersection of these lines with the line $y = 100-x$

2007 Mid-Michigan MO, 5-6

[b]p1.[/b] The Evergreen School booked buses for a field trip. Altogether, $138$ people went to West Lake, while $115$ people went to East Lake. The buses all had the same number of seats, and every bus has more than one seat. All seats were occupied and everybody had a seat. How many seats were there in each bus? [b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $50$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a 6 cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $150$ coins? [b]p3.[/b] Pinocchio multiplied two $2$ digit numbers. But witch Masha erased some of the digits. The erased digits are the ones marked with a $*$. Could you help Pinocchio to restore all the erased digits? $\begin{tabular}{ccccc} & & & 9 & 5 \\ x & & & * & * \\ \hline & & & * & * \\ + & 1 & * & * & \\ \hline & * & * & * & * \\ \end{tabular}$ Find all solutions. [b]p4.[/b] There are $50$ senators and $435$ members of House of Representatives. On Friday all of them voted a very important issue. Each senator and each representative was required to vote either "yes" or "no". The announced results showed that the number of "yes" votes was greater than the number of "no" votes by $24$. Prove that there was an error in counting the votes. [b]p5.[/b] Was there a year in the last millennium (from $1000$ to $2000$) such that the sum of the digits of that year is equal to the product of the digits? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 JBMO ShortLists, 10

Let $ ABC$ be a triangle with area $ S$ and points $ D,E,F$ on the sides $ BC,CA,AB$. Perpendiculars at points $ D,E,F$ to the $ BC,CA,AB$ cut circumcircle of the triangle $ ABC$ at points $ (D_1,D_2), (E_1,E_2), (F_1,F_2)$. Prove that: $ |D_1B\cdot D_1C \minus{} D_2B\cdot D_2C| \plus{} |E_1A\cdot E_1C \minus{} E_2A\cdot E_2C| \plus{} |F_1B\cdot F_1A \minus{} F_2B\cdot F_2A| > 4S$

2020 JBMO Shortlist, 3

Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \ne A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ be the circumcircle of the triangle $\triangle AEZ$. Let $D$ be the second point of intersection of $(c)$ with $ZC$ and let $F$ be the antidiametric point of $D$ with respect to $(c)$. Let $P$ be the point of intersection of the lines $FE$ and $CZ$. If the tangent to $(c)$ at $Z$ meets $PA$ at $T$, prove that the points $T$, $E$, $B$, $Z$ are concyclic. Proposed by [i]Theoklitos Parayiou, Cyprus[/i]

1994 Vietnam National Olympiad, 2

$ABC$ is a triangle. Reflect each vertex in the opposite side to get the triangle $A'B'C'$. Find a necessary and sufficient condition on $ABC$ for $A'B'C'$ to be equilateral.

2004 Italy TST, 1

Tags: geometry
Two circles $\gamma_1$ and $\gamma_2$ intersect at $A$ and $B$. A line $r$ through $B$ meets $\gamma_1$ at $C$ and $\gamma_2$ at $D$ so that $B$ is between $C$ and $D$. Let $s$ be the line parallel to $AD$ which is tangent to $\gamma_1$ at $E$, at the smaller distance from $AD$. Line $EA$ meets $\gamma_2$ in $F$. Let $t$ be the tangent to $\gamma_2$ at $F$. $(a)$ Prove that $t$ is parallel to $AC$. $(b)$ Prove that the lines $r,s,t$ are concurrent.

2006 Thailand Mathematical Olympiad, 3

Tags: geometry , median
The three medians of a triangle has lengths $3, 4, 5$. What is the length of the shortest side of this triangle?

2023-IMOC, G2

Tags: geometry
$P$ is a point inside $\triangle ABC$. $AP, BP, CP$ intersects $BC, CA, AB$ at $D, E, F$, respectively. $AD$ meets $(ABC)$ again at $D_1$. $S$ is a point on $(ABC)$. Lines $AS$, $EF$ intersect at $T$, lines $TP, BC$ intersect at $K$, and $KD_1$ meets $(ABC)$ again at $X$. Prove that $S, D, X$ are colinear.

2005 Switzerland - Final Round, 5

Tweaking a convex $n$-gon means the following: choose two adjacent sides $AB$ and $BC$ and replaces them with the line segment $AM$, $MN$, $NC$, where $M \in AB$ and $N \in BC$ are arbitrary points inside these segments. In other words, you cut off a corner and get an $(n+1)$-corner. Starting from a regular hexagon $P_6$ with area $1$, by continuous Tweaks a sequence $P_6,P_7,P_8, ...$ convex polygons. Show that Area of $​​P_n$ for all $n\ge 6$ greater than $\frac1 2$ is, regardless of how tweaks takes place.

2017-IMOC, G1

Given $\vartriangle ABC$. Choose two points $P, Q$ on $AB, AC$ such that $BP = CQ$. Let $M, T$ be the midpoints of $BC, PQ$. Show that $MT$ is parallel to the angle bisevtor of $\angle BAC$ [img]http://4.bp.blogspot.com/-MgMtdnPtq1c/XnSHHFl1LDI/AAAAAAAALdY/8g8541DnyGo_Gqd19-7bMBpVRFhbXeYPACK4BGAYYCw/s1600/imoc2017%2Bg1.png[/img]

IV Soros Olympiad 1997 - 98 (Russia), 9.10

On the plane there is an image of a circle with a marked center. Let an arbitrary angle be drawn on this plane. Using one ruler, construct the bisector of this angle.

Ukrainian From Tasks to Tasks - geometry, 2012.2

The triangle $ABC$ is equilateral. Find the locus of the points $M$ such that the triangles $ABM$ and $ACM$ are both isosceles.

Novosibirsk Oral Geo Oly IX, 2023.7

Tags: geometry , angle
Triangle $ABC$ is given with angles $\angle ABC = 60^o$ and $\angle BCA = 100^o$. On the sides AB and AC, the points $D$ and $E$ are chosen, respectively, in such a way that $\angle EDC = 2\angle BCD = 2\angle CAB$. Find the angle $\angle BED$.

2004 Denmark MO - Mohr Contest, 1

The width of rectangle $ABCD$ is twice its height, and the height of rectangle $EFCG$ is twice its width. The point $E$ lies on the diagonal $BD$. Which fraction of the area of the big rectangle is that of the small one? [img]https://1.bp.blogspot.com/-aeqefhbBh5E/XzcBjhgg7sI/AAAAAAAAMXM/B0qSgWDBuqc3ysd-mOitP1LarOtBdJJ3gCLcBGAsYHQ/s0/2004%2BMohr%2Bp1.png[/img]

1980 IMO Shortlist, 20

Let $S$ be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that $S$ has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}.$

2022 AMC 10, 20

Let $ABCD$ be a rhombus with $\angle{ADC} = 46^{\circ}$. Let $E$ be the midpoint of $\overline{CD}$, and let $F$ be the point on $\overline{BE}$ such that $\overline{AF}$ is perpendicular to $\overline{BE}$. What is the degree measure of $\angle{BFC}$? $\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114$

2007 France Team Selection Test, 3

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2001 Bundeswettbewerb Mathematik, 3

Let $ ABC$ an acute triangle with circumcircle center $ O.$ The line $ (BO)$ intersects the circumcircle again in $ D,$ and the extension of the altitude from $ A$ intersects the circle in $ E.$ Prove that the quadrilateral $ BECD$ and the triangle $ ABC$ have the same area.

2011 Korea - Final Round, 2

$ABC$ is an acute triangle. $P$(different from $B,C$) is a point on side $BC$. $H$ is an orthocenter, and $D$ is a foot of perpendicular from $H$ to $AP$. The circumcircle of the triangle $ABD$ and $ACD$ is $O _1$ and $O_2$, respectively. A line $l$ parallel to $BC$ passes $D$ and meet $O_1$ and $O_2$ again at $X$ and $Y$, respectively. $l$ meets $AB$ at $E$, and $AC$ at $F$. Two lines $XB$ and $YC$ intersect at $Z$. Prove that $ZE=ZF$ is a necessary and sufficient condition for $BP=CP$.

2021 USA IMO Team Selection Test, 2

Tags: geometry
Points $A$, $V_1$, $V_2$, $B$, $U_2$, $U_1$ lie fixed on a circle $\Gamma$, in that order, and such that $BU_2 > AU_1 > BV_2 > AV_1$. Let $X$ be a variable point on the arc $V_1 V_2$ of $\Gamma$ not containing $A$ or $B$. Line $XA$ meets line $U_1 V_1$ at $C$, while line $XB$ meets line $U_2 V_2$ at $D$. Let $O$ and $\rho$ denote the circumcenter and circumradius of $\triangle XCD$, respectively. Prove there exists a fixed point $K$ and a real number $c$, independent of $X$, for which $OK^2 - \rho^2 = c$ always holds regardless of the choice of $X$. [i]Proposed by Andrew Gu and Frank Han[/i]

2007 Germany Team Selection Test, 3

In triangle $ ABC$ we have $ a \geq b$ and $ a \geq c.$ Prove that the ratio of circumcircle radius to incircle diameter is at least as big as the length of the centroidal axis $ s_a$ to the altitude $ a_a.$ When do we have equality?

2021 Kyiv Mathematical Festival, 5

Tags: geometry
Let $\omega$ be the circumcircle of a triangle $ABC$ (${AB\ne AC}$), $I$ be the incenter, $P$ be the point on $\omega$ for which $\angle API=90^\circ,$ $S$ be the intersection point of lines $AP$ and $BC,$ $W$ be the intersection point of line $AI$ and $\omega.$ Line which passes through point $W$ orthogonally to $AW$ meets $AP$ and $BC$ at points $D$ and $E$ respectively. Prove that $SD=IE.$ (Ye. Azarov)