Found problems: 25757
2013 Costa Rica - Final Round, G3
Let $ABCD$ be a rectangle with center $O$ such that $\angle DAC = 60^o$. Bisector of $\angle DAC$ cuts a $DC$ at $S$, $OS$ and $AD$ intersect at $L$, $BL$ and $AC$ intersect at $M$. Prove that $SM \parallel CL$.
2010 Canada National Olympiad, 1
For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically.
Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$.
(a) Find all $n$ such that $f(n)=n$.
(b) Find all $n$ such that $f(n) = n+1$.
2007 Stanford Mathematics Tournament, 15
A number $ x$ is uniformly chosen on the interval $ [0,1]$, and $ y$ is uniformly randomly chosen on $ [\minus{}1,1]$. Find the probability that $ x>y$.
2007 All-Russian Olympiad, 6
A line, which passes through the incentre $I$ of the triangle $ABC$, meets its sides $AB$ and $BC$ at the points $M$ and $N$ respectively. The triangle $BMN$ is acute. The points $K,L$ are chosen on the side $AC$ such that $\angle ILA=\angle IMB$ and $\angle KC=\angle INB$. Prove that $AM+KL+CN=AC$.
[i]S. Berlov[/i]
1988 Bulgaria National Olympiad, Problem 5
The points of space are painted in two colors. Prove that there is a tetrahedron such that all its vertices and its centroid are of the same color.
2008 Polish MO Finals, 3
In a convex pentagon $ ABCDE$ in which $ BC\equal{}DE$ following equalities hold:
\[ \angle ABE \equal{}\angle CAB \equal{}\angle AED\minus{}90^{\circ},\qquad \angle ACB\equal{}\angle ADE\]
Show that $ BCDE$ is a parallelogram.
Novosibirsk Oral Geo Oly IX, 2021.1
Cut the $19 \times 20$ grid rectangle along the grid lines into several squares so that there are exactly four of them with odd sidelengths.
1992 Tournament Of Towns, (350) 2
The following spiral sequence of squares is drawn on an infinite blackboard: The $1$st square $(1 \times 1)$ has a common vertical side with the $2$nd square (also $1\times 1$) drawn on the right side of it; the 3rd square $(2 \times 2)$ is drawn on the upper side of the $1$st and 2nd ones; the $4$th square $(3 \times 3)$ is drawn on the left side of the $1$st and $3$rd ones; the $5$th square $(5 \times 5)$ is drawn on the bottom side of the $4$th, 1st and $2$nd ones; the $6$th square $(8 \times 8)$ is drawn on the right side, and so on. Each of the squares has a common side with the rectangle consisting of squares constructed earlier. Prove that the centres of all the squares except the $1$st lie on two straight lines.
(A Andjans, Riga)
2022 AMC 10, 13
Let $\triangle ABC$ be a scalene triangle. Point $P$ lies on $\overline{BC}$ so that $\overline{AP}$ bisects $\angle BAC$. The line through $B$ perpendicular to $\overline{AP}$ intersects the line through $A$ parallel to $\overline{BC}$ at point $D$. Suppose $BP = 2$ and $PC = 3$. What is $AD$ ?
$\textbf{(A) }8\qquad\textbf{(B) }9\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$
2019 LMT Spring, Team Round
[b]p1.[/b] David runs at $3$ times the speed of Alice. If Alice runs $2$ miles in $30$ minutes, determine how many minutes it takes for David to run a mile.
[b]p2.[/b] Al has $2019$ red jelly beans. Bob has $2018$ green jelly beans. Carl has $x$ blue jelly beans. The minimum number of jelly beans that must be drawn in order to guarantee $2$ jelly beans of each color is $4041$. Compute $x$.
[b]p3.[/b] Find the $7$-digit palindrome which is divisible by $7$ and whose first three digits are all $2$.
[b]p4.[/b] Determine the number of ways to put $5$ indistinguishable balls in $6$ distinguishable boxes.
[b]p5.[/b] A certain reduced fraction $\frac{a}{b}$ (with $a,b > 1$) has the property that when $2$ is subtracted from the numerator and added to the denominator, the resulting fraction has $\frac16$ of its original value. Find this fraction.
[b]p6.[/b] Find the smallest positive integer $n$ such that $|\tau(n +1)-\tau(n)| = 7$. Here, $\tau(n)$ denotes the number of divisors of $n$.
[b]p7.[/b] Let $\vartriangle ABC$ be the triangle such that $AB = 3$, $AC = 6$ and $\angle BAC = 120^o$. Let $D$ be the point on $BC$ such that $AD$ bisect $\angle BAC$. Compute the length of $AD$.
[b]p8.[/b] $26$ points are evenly spaced around a circle and are labeled $A$ through $Z$ in alphabetical order. Triangle $\vartriangle LMT$ is drawn. Three more points, each distinct from $L, M$, and $T$ , are chosen to form a second triangle. Compute the probability that the two triangles do not overlap.
[b]p9.[/b] Given the three equations
$a +b +c = 0$
$a^2 +b^2 +c^2 = 2$
$a^3 +b^3 +c^3 = 19$
find $abc$.
[b]p10.[/b] Circle $\omega$ is inscribed in convex quadrilateral $ABCD$ and tangent to $AB$ and $CD$ at $P$ and $Q$, respectively. Given that $AP = 175$, $BP = 147$,$CQ = 75$, and $AB \parallel CD$, find the length of $DQ$.
[b]p11. [/b]Let $p$ be a prime and m be a positive integer such that $157p = m^4 +2m^3 +m^2 +3$. Find the ordered pair $(p,m)$.
[b]p12.[/b] Find the number of possible functions $f : \{-2,-1, 0, 1, 2\} \to \{-2,-1, 0, 1, 2\}$ that satisfy the following conditions.
(1) $f (x) \ne f (y)$ when $x \ne y$
(2) There exists some $x$ such that $f (x)^2 = x^2$
[b]p13.[/b] Let $p$ be a prime number such that there exists positive integer $n$ such that $41pn -42p^2 = n^3$. Find the sum of all possible values of $p$.
[b]p14.[/b] An equilateral triangle with side length $ 1$ is rotated $60$ degrees around its center. Compute the area of the region swept out by the interior of the triangle.
[b]p15.[/b] Let $\sigma (n)$ denote the number of positive integer divisors of $n$. Find the sum of all $n$ that satisfy the equation $\sigma (n) =\frac{n}{3}$.
[b]p16[/b]. Let $C$ be the set of points $\{a,b,c\} \in Z$ for $0 \le a,b,c \le 10$. Alice starts at $(0,0,0)$. Every second she randomly moves to one of the other points in $C$ that is on one of the lines parallel to the $x, y$, and $z$ axes through the point she is currently at, each point with equal probability. Determine the expected number of seconds it will take her to reach $(10,10,10)$.
[b]p17.[/b] Find the maximum possible value of $$abc \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3$$ where $a,b,c$ are real such that $a +b +c = 0$.
[b]p18.[/b] Circle $\omega$ with radius $6$ is inscribed within quadrilateral $ABCD$. $\omega$ is tangent to $AB$, $BC$, $CD$, and $DA$ at $E, F, G$, and $H$ respectively. If $AE = 3$, $BF = 4$ and $CG = 5$, find the length of $DH$.
[b]p19.[/b] Find the maximum integer $p$ less than $1000$ for which there exists a positive integer $q$ such that the cubic equation $$x^3 - px^2 + q x -(p^2 -4q +4) = 0$$ has three roots which are all positive integers.
[b]p20.[/b] Let $\vartriangle ABC$ be the triangle such that $\angle ABC = 60^o$,$\angle ACB = 20^o$. Let $P$ be the point such that $CP$ bisects $\angle ACB$ and $\angle PAC = 30^o$. Find $\angle PBC$.
PS. You had better use hide for answers.
2000 AMC 12/AHSME, 19
In triangle $ ABC$, $ AB \equal{} 13$, $ BC \equal{} 14$, and $ AC \equal{} 15$. Let $ D$ denote the midpoint of $ \overline{BC}$ and let $ E$ denote the intersection of $ \overline{BC}$ with the bisector of angle $ BAC$. Which of the following is closest to the area of the triangle $ ADE$?
$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 2.5 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 3.5 \qquad \textbf{(E)}\ 4$
2010 AMC 8, 6
Which of the following has the greatest number of line of symmetry?
$ \textbf{(A)}\ \text{ Equilateral Triangle}$
$\textbf{(B)}\ \text{Non-square rhombus} $
$\textbf{(C)}\ \text{Non-square rectangle}$
$\textbf{(D)}\ \text{Isosceles Triangle}$
$\textbf{(E)}\ \text{Square} $
2010 Today's Calculation Of Integral, 566
In the coordinate space, consider the cubic with vertices $ O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0),\ C(0,\ 1,\ 0),\ D(0,\ 0,\ 1),\ E(1,\ 0,\ 1),\ F(1,\ 1,\ 1),\ G(0,\ 1,\ 1)$. Find the volume of the solid generated by revolution of the cubic around the diagonal $ OF$ as the axis of rotation.
1991 National High School Mathematics League, 14
$O$ is the vertex of a parabola, $F$ is its focus. $PQ$ is a chord of the parabola. If $|OF|=a,|PQ|=b$, find the area of $\triangle OPQ$.
2007 Purple Comet Problems, 20
Three congruent ellipses are mutually tangent. Their major axes are parallel. Two of the ellipses are tangent at the end points of their minor axes as shown. The distance between the centers of these two ellipses is $4$. The distances from those two centers to the center of the third ellipse are both $14$. There are positive integers m and n so that the area between these three ellipses is $\sqrt{n}-m \pi$. Find $m+n$.
[asy]
size(250);
filldraw(ellipse((2.2,0),2,1),grey);
filldraw(ellipse((0,-2),4,2),white);
filldraw(ellipse((0,+2),4,2),white);
filldraw(ellipse((6.94,0),4,2),white);[/asy]
2021 ELMO Problems, 6
In $\triangle ABC$, points $D$, $E$, and $F$ lie on sides $BC$, $CA$, and $AB$, respectively, such that each of the quadrilaterals $AFDE$, $BDEF$, and $CEFD$ has an incircle. Prove that the inradius of $\triangle ABC$ is twice the inradius of $\triangle DEF$.
2007 IMO, 2
Consider five points $ A$, $ B$, $ C$, $ D$ and $ E$ such that $ ABCD$ is a parallelogram and $ BCED$ is a cyclic quadrilateral. Let $ \ell$ be a line passing through $ A$. Suppose that $ \ell$ intersects the interior of the segment $ DC$ at $ F$ and intersects line $ BC$ at $ G$. Suppose also that $ EF \equal{} EG \equal{} EC$. Prove that $ \ell$ is the bisector of angle $ DAB$.
[i]Author: Charles Leytem, Luxembourg[/i]
1949-56 Chisinau City MO, 58
On the plane $n$ points are chosen so that exactly $m$ of them lie on one straight line and no three points not included in these $m$ points lie on one straight line. What is the number of all lines, each of which contains at least two of these points?
2022 Turkey MO (2nd round), 1
In triangle $ABC$, $M$ is the midpoint of side $BC$, the bisector of angle $BAC$ intersects $BC$ and $(ABC)$ at $K$ and $L$, respectively. If the circle with diameter $[BC]$ is tangent to the external angle bisector of angle $BAC$, prove that this circle is tangent to $(KLM)$ as well.
2001 District Olympiad, 3
Consider four points $A,B,C,D$ not in the same plane such that
\[AB=BD=CD=AC=\sqrt{2} AD=\frac{\sqrt{2}}{2}BC=a\]
Prove that:
a)There is a point $M\in [BC]$ such that $MA=MB=MC=MD$.
b)$2m(\sphericalangle(AD,BC))=3m(\sphericalangle((ABC),(BCD)))$
c)$6(d(A,CD))^2=7(d(A,(BCD)))^2$
[i]Ion Trandafir[/i]
2019 Belarusian National Olympiad, 9.6
The point $M$ is the midpoint of the side $BC$ of triangle $ABC$. A circle is passing through $B$, is tangent to the line $AM$ at $M$, and intersects the segment $AB$ secondary at the point $P$.
Prove that the circle, passing through $A$, $P$, and the midpoint of the segment $AM$, is tangent to the line $AC$.
[i](A. Voidelevich)[/i]
1998 Mexico National Olympiad, 5
The tangents at points $B$ and $C$ on a given circle meet at point $A$. Let $Q$ be a point on segment $AC$ and let $BQ$ meet the circle again at $P$. The line through $Q $ parallel to $AB$ intersects $BC$ at $J$. Prove that $PJ$ is parallel to $AC$ if and only if $BC^2 = AC\cdot QC$.
2024 Belarus Team Selection Test, 1.2
An acute-angled triangle $ABC$ with an altitude $AD$ and orthocenter $H$ are given. $AD$ intersects the circumcircle of $ABC$ $\omega$ at $P$. $K$ is a point on segment $BC$ such that $KC=BD$. The circumcircle of $KPH$ intersects $\omega$ at $Q$ and $BC$ at $N$. A line perpendicular to $PQ$ and passing through $N$ intersects $AD$ at $T$. Prove that the center of $\omega$ lies on line $TK$.
[i]U. Maksimenkau[/i]
1990 Putnam, A3
Prove that any convex pentagon whose vertices (no three of which are collinear) have integer coordinates must have area greater than or equal to $ \dfrac {5}{2} $.
2009 Turkey MO (2nd round), 2
Let $\Gamma$ be the circumcircle of a triangle $ABC,$ and let $D$ and $E$ be two points different from the vertices on the sides $AB$ and $AC,$ respectively. Let $A'$ be the second point where $\Gamma$ intersects the bisector of the angle $BAC,$ and let $P$ and $Q$ be the second points where $\Gamma$ intersects the lines $A'D$ and $A'E,$ respectively. Let $R$ and $S$ be the second points of intersection of the lines $AA'$ and the circumcircles of the triangles $APD$ and $AQE,$ respectively.
Show that the lines $DS, \: ER$ and the tangent line to $\Gamma$ through $A$ are concurrent.