This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1994 Tuymaada Olympiad, 4

Let a convex polyhedron be given with volume $V$ and full surface $S$. Prove that inside a polyhedron it is possible to arrange a ball of radius $\frac{V}{S}$.

2020 ASDAN Math Tournament, 1

Consider triangle $\vartriangle ABC$ with $\angle C = 90^o$. Let $P$ be the midpoint of $\overline{AC}$ so that $AP = PC = 1$, and suppose $\angle BAC = \angle CBP$. Compute $AB^2$.

2024 Iran MO (3rd Round), 1

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral with circumcircle $\Gamma$. Let $M$ be the midpoint of the arc $ABC$. The circle with center $M$ and radius $MA$ meets $AD, AB$ at $X, Y$. The point $Z \in XY$ with $Z \neq Y$ satisfies $BY=BZ$. Show that $\angle BZD=\angle BCD$.

2024 Oral Moscow Geometry Olympiad, 2

Tags: geometry , 3d
Petya drew a pentagon $ABCDE$ on the plane. After that, Vasya marked all the points $S$ in a given half-space relative to the plane of the pentagon so that in the pyramid $SABCD$ exactly two side faces are perpendicular to the plane of the base $ABCD$, and the height is $1$. How many points could have Vasya?

2019 PUMaC Geometry B, 6

Tags: geometry
Let $\Gamma$ be a circle with center $A$, radius $1$ and diameter $BX$. Let $\Omega$ be a circle with center $C$, radius $1$ and diameter $DY $, where $X$ and $Y$ are on the same side of $AC$. $\Gamma$ meets $\Omega$ at two points, one of which is $Z$. The lines tangent to $\Gamma$ and $\Omega$ that pass through $Z$ cut out a sector of the plane containing no part of either circle and with angle $60^\circ$. If $\angle XY C = \angle CAB$ and $\angle XCD = 90^\circ$, then the length of $XY$ can be written in the form $\tfrac{\sqrt a+\sqrt b}{c}$ for integers $a, b, c$ where $\gcd(a, b, c) = 1$. Find $a + b + c$.

2007 China Western Mathematical Olympiad, 1

Is there a triangle with sides of integer lengths such that the length of the shortest side is $ 2007$ and that the largest angle is twice the smallest?

2013 National Olympiad First Round, 21

Let $D$ and $E$ be points on side $[AB]$ of a right triangle with $m(\widehat{C})=90^\circ$ such that $|AD|=|AC|$ and $|BE|=|BC|$. Let $F$ be the second intersection point of the circumcircles of triangles $AEC$ and $BDC$. If $|CF|=2$, what is $|ED|$? $ \textbf{(A)}\ \sqrt 2 \qquad\textbf{(B)}\ 1+\sqrt 2 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 2\sqrt 2 \qquad\textbf{(E)}\ \text{None of above} $

2018 Azerbaijan BMO TST, 4

Let $ABC$ be an acute angled triangle with orthocenter $H$. centroid $G$ and circumcircle $\omega$. Let $D$ and $M$ respectively be the intersection of lines $AH$ and $AG$ with side $BC$. Rays $MH$ and $DG$ interect $ \omega$ again at $P$ and $Q$ respectively. Prove that $PD$ and $QM$ intersect on $\omega$.

2012 ITAMO, 5

$ABCD$ is a square. Describe the locus of points $P$, different from $A, B, C, D$, on that plane for which \[\widehat{APB}+\widehat{CPD}=180^\circ\]

1954 Polish MO Finals, 6

Tags: geometry
Inside a hoop of radius $ 2r $ a disk of radius $ r $ rolls on the hoop without slipping. What line is traced by a point arbitrarily chosen on the edge of the disk?

1995 National High School Mathematics League, 4

Color all points on a plane in red or blue. Prove that there exists two similar triangles, their similarity ratio is $1995$, and apexes of both triangles are in the same color.

1989 Greece Junior Math Olympiad, 3

Given a square $ABCD$ of side $a$, we consider the circle $\omega$, tangent to side $BC$ and to the two semicircles of diameters $AB$ and $CD$. Calculate the radius of circle $\omega$,

1995 Czech and Slovak Match, 3

Consider all triangles $ABC$ in the cartesian plane whose vertices are at lattice points (i.e. with integer coordinates) and which contain exactly one lattice point (to be denoted $P$) in its interior. Let the line $AP$ meet $BC$ at $E$. Determine the maximum possible value of the ratio $\frac{AP}{PE}$.

2005 MOP Homework, 7

Let $a$, $b$, and $c$ be pairwise distinct positive integers, which are side lengths of a triangle. There is a line which cuts both the area and the perimeter of the triangle into two equal parts. This line cuts the longest side of the triangle into two parts with ratio $2:1$. Determine $a$, $b$, and $c$ for which the product abc is minimal.

1992 Austrian-Polish Competition, 5

Given a circle $k$ with center $M$ and radius $r$, let $AB$ be a fixed diameter of $k$ and let $K$ be a fixed point on the segment $AM$. Denote by $t$ the tangent of $k$ at $A$. For any chord $CD$ through $K$ other than $AB$, denote by $P$ and Q the intersection points of $BC$ and $BD$ with $t$, respectively. Prove that $AP\cdot AQ$ does not depend on $CD$.

2005 Thailand Mathematical Olympiad, 4

Let $O_1$ be the center of a semicircle $\omega_1$ with diameter $AB$ and let $O_2$ be the center of a circle $\omega_2$ inscribed in $\omega_1$ and which is tangent to $AB$ at $O_1$. Let $O_3$ be a point on $AB$ that is the center of a semicircle $\omega_3$ which is tangent to both $\omega_1$ and $\omega_2$. Let $P$ be the intersection of the line through $O_3$ perpendicular to $AB$ and the line through $O_2$ parallel to $AB$. Show that $P$ is the center of a circle $\Gamma$ tangent to all of $\omega_1, \omega_2$ and $\omega_3$.

2011 Czech-Polish-Slovak Match, 3

Points $A$, $B$, $C$, $D$ lie on a circle (in that order) where $AB$ and $CD$ are not parallel. The length of arc $AB$ (which contains the points $D$ and $C$) is twice the length of arc $CD$ (which does not contain the points $A$ and $B$). Let $E$ be a point where $AC=AE$ and $BD=BE$. Prove that if the perpendicular line from point $E$ to the line $AB$ passes through the center of the arc $CD$ (which does not contain the points $A$ and $B$), then $\angle ACB = 108^\circ$.

2005 Estonia National Olympiad, 4

In a fixed plane, consider a convex quadrilateral $ABCD$. Choose a point $O$ in the plane and let $K, L, M$, and $N$ be the circumcentres of triangles $AOB, BOC, COD$, and $DOA$, respectively. Prove that there exists exactly one point $O$ in the plane such that $KLMN$ is a parallelogram.

1982 IMO Shortlist, 13

A non-isosceles triangle $A_{1}A_{2}A_{3}$ has sides $a_{1}$, $a_{2}$, $a_{3}$ with the side $a_{i}$ lying opposite to the vertex $A_{i}$. Let $M_{i}$ be the midpoint of the side $a_{i}$, and let $T_{i}$ be the point where the inscribed circle of triangle $A_{1}A_{2}A_{3}$ touches the side $a_{i}$. Denote by $S_{i}$ the reflection of the point $T_{i}$ in the interior angle bisector of the angle $A_{i}$. Prove that the lines $M_{1}S_{1}$, $M_{2}S_{2}$ and $M_{3}S_{3}$ are concurrent.

2013 Sharygin Geometry Olympiad, 15

(a) Triangles $A_1B_1C_1$ and $A_2B_2C_2$ are inscribed into triangle $ABC$ so that $C_1A_1 \perp BC$, $A_1B_1 \perp CA$, $B_1C_1 \perp AB$, $B_2A_2 \perp BC$, $C_2B_2 \perp CA$, $A_2C_2 \perp AB$. Prove that these triangles are equal. (b) Points $A_1$, $B_1$, $C_1$, $A_2$, $B_2$, $C_2$ lie inside a triangle $ABC$ so that $A_1$ is on segment $AB_1$, $B_1$ is on segment $BC_1$, $C_1$ is on segment $CA_1$, $A_2$ is on segment $AC_2$, $B_2$ is on segment $BA_2$, $C_2$ is on segment $CB_2$, and the angles $BAA_1$, $CBB_2$, $ACC_1$, $CAA_2$, $ABB_2$, $BCC_2$ are equal. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equal.

2015 Tuymaada Olympiad, 7

In $\triangle ABC$ points $M,O$ are midpoint of $AB$ and circumcenter. It is true, that $OM=R-r$. Bisector of external $\angle A$ intersect $BC$ at $D$ and bisector of external $\angle C$ intersect $AB$ at $E$. Find possible values of $\angle CED$ [i]D. Shiryaev [/i]

2022 Stars of Mathematics, 2

Tags: geometry
Let $ABCD$ be a convex quadrilateral and $P$ be a point in its interior, such that $\angle APB+\angle CPD=\angle BPC+\angle DPA$, $\angle PAD+\angle PCD=\angle PAB+\angle PCB$ and $\angle PDC+ \angle PBC= \angle PDA+\angle PBA$. Prove that the quadrilateral is circumscribed.

2004 Flanders Math Olympiad, 4

Each cell of a beehive is constructed from a right regular 6-angled prism, open at the bottom and closed on the top by a regular 3-sided pyramidical mantle. The edges of this pyramid are connected to three of the rising edges of the prism and its apex $T$ is on the perpendicular line through the center $O$ of the base of the prism (see figure). Let $s$ denote the side of the base, $h$ the height of the cell and $\theta$ the angle between the line $TO$ and $TV$. (a) Prove that the surface of the cell consists of 6 congruent trapezoids and 3 congruent rhombi. (b) the total surface area of the cell is given by the formula $6sh - \dfrac{9s^2}{2\tan\theta} + \dfrac{s^2 3\sqrt{3}}{2\sin\theta}$ [img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=286[/img]

2017 Sharygin Geometry Olympiad, 7

Let $A_1A_2 \dots A_{13}$ and $B_1B_2 \dots B_{13}$ be two regular $13$-gons in the plane such that the points $B_1$ and $A_{13}$ coincide and lie on the segment $A_1B_{13}$, and both polygons lie in the same semiplane with respect to this segment. Prove that the lines $A_1A_9, B_{13}B_8$ and $A_8B_9$ are concurrent.

2015 Romania National Olympiad, 3

Let $VABC$ be a regular triangular pyramid with base $ABC$, of center $O$. Points $I$ and $H$ are the center of the inscribed circle, respectively the orthocenter $\vartriangle VBC$. Knowing that $AH = 3 OI$, determine the measure of the angle between the lateral edge of the pyramid and the plane of the base.