This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1991 Baltic Way, 18

Is it possible to place two non-intersecting tetrahedra of volume $\frac{1}{2}$ into a sphere with radius $1$?

2005 Iran Team Selection Test, 2

Tags: function , geometry
Suppose there are $n$ distinct points on plane. There is circle with radius $r$ and center $O$ on the plane. At least one of the points are in the circle. We do the following instructions. At each step we move $O$ to the baricenter of the point in the circle. Prove that location of $O$ is constant after some steps.

1985 All Soviet Union Mathematical Olympiad, 408

The $[A_0A_5]$ diameter divides a circumference with the $O$ centre onto two hemicircumferences. One of them is divided onto five equal arcs $A_0A_1, A_1A_2, A_2A_3, A_3A_4, A_4A_5$. The $(A_1A_4)$ line crosses $(OA_2)$ and $(OA_3)$ lines in $M$ and $N$ points. Prove that $(|A_2A_3| + |MN|)$ equals to the circumference radius.

Denmark (Mohr) - geometry, 2005.3

The point $P$ lies inside $\vartriangle ABC$ so that $\vartriangle BPC$ is isosceles, and angle $P$ is a right angle. Furthermore both $\vartriangle BAN$ and $\vartriangle CAM$ are isosceles with a right angle at $A$, and both are outside $\vartriangle ABC$. Show that $\vartriangle MNP$ is isosceles and right-angled. [img]https://1.bp.blogspot.com/-i9twOChu774/XzcBLP-RIXI/AAAAAAAAMXA/n5TJCOJypeMVW28-9GDG4st5C47yhvTCgCLcBGAsYHQ/s0/2005%2BMohr%2Bp3.png[/img]

1985 Canada National Olympiad, 1

The lengths of the sides of a triangle are 6, 8 and 10 units. Prove that there is exactly one straight line which simultaneously bisects the area and perimeter of the triangle.

2024 Israel National Olympiad (Gillis), P4

Acute triangle $ABC$ is inscribed in a circle with center $O$. The reflections of $O$ across the three altitudes of the triangle are called $U$, $V$, $W$: $U$ over the altitude from $A$, $V$ over the altitude from $B$, and $W$ over the altitude from $C$. Let $\ell_A$ be a line through $A$ parallel to $VW$, and define $\ell_B$, $\ell_C$ similarly. Prove that the three lines $\ell_A$, $\ell_B$, $\ell_C$ are concurrent.

1974 Yugoslav Team Selection Test, Problem 2

Given two directly congruent triangles $ABC$ and $A'B'C'$ in a plane, assume that the circles with centers $C$ and $C'$ and radii $CA$ and $C'A'$ intersect. Denote by $\mathcal M$ the transformation that maps $\triangle ABC$ to $\triangle A'B'C'$. Prove that $\mathcal M$ can be expressed as a composition of at most three rotations in the following way: The first rotation has the center in one of $A,B,C$ and maps $\triangle ABC$ to $\triangle A_1B_1C_1$; The second rotation has the center in one of $A_1,B_1,C_1$, and maps $\triangle A_1B_1C_1$ to $\triangle A_2B_2C_2$; The third rotation has the center in one of $A_2,B_2,C_2$ and maps $\triangle A_2B_2C_2$ to $\triangle A'B'C'$.

2017 Switzerland - Final Round, 1

Let $A$ and $B$ be points on the circle $k$ with center $O$, so that $AB> AO$. Let $C$ be the intersection of the bisectors of $\angle OAB$ and $k$, different from $A$. Let $D$ be the intersection of the straight line $AB$ with the circumcircle of the triangle $OBC$, different from $B$. Show that $AD = AO$ .

2024-25 IOQM India, 7

Determine the sum of all possible surface area of a cube two of whose vertices are $(1,2,0)$ and $(3,3,2)$.

2017 CMIMC Geometry, 1

Let $ABC$ be a triangle with $\angle BAC=117^\circ$. The angle bisector of $\angle ABC$ intersects side $AC$ at $D$. Suppose $\triangle ABD\sim\triangle ACB$. Compute the measure of $\angle ABC$, in degrees.

1996 AIME Problems, 6

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2019 HMNT, 3

Tags: geometry
For breakfast, Milan is eating a piece of toast shaped like an equilateral triangle. On the piece of toast rests a single sesame seed that is one inch away from one side, two inches away from another side, and four inches away from the third side. He places a circular piece of cheese on top of the toast that is tangent to each side of the triangle. What is the area of this piece of cheese?

2013 Saudi Arabia BMO TST, 3

Find the area of the set of points of the plane whose coordinates $(x, y)$ satisfy $x^2 + y^2 \le 4|x| + 4|y|$.

2007 Junior Balkan Team Selection Tests - Romania, 2

Let $ABCD$ be a trapezium $(AB \parallel CD)$ and $M,N$ be the intersection points of the circles of diameters $AD$ and $BC$. Prove that $O \in MN$, where $O \in AC \cap BD$.

2022 Iberoamerican, 1

Tags: geometry
Given is an equilateral triangle $ABC$ with circumcenter $O$. Let $D$ be a point on to minor arc $BC$ of its circumcircle such that $DB>DC$. The perpendicular bisector of $OD$ meets the circumcircle at $E, F$, with $E$ lying on the minor arc $BC$. The lines $BE$ and $CF$ meet at $P$. Prove that $PD \perp BC$.

2008 AMC 10, 10

Tags: geometry
Each of the sides of a square $ S_1$ with area $ 16$ is bisected, and a smaller square $ S_2$ is constructed using the bisection points as vertices. The same process is carried out on $ S_2$ to construct an even smaller square $ S_3$. What is the area of $ S_3$? $ \textbf{(A)}\ \frac {1}{2} \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

1992 IMO Longlists, 76

Given any triangle $ABC$ and any positive integer $n$, we say that $n$ is a [i]decomposable[/i] number for triangle $ABC$ if there exists a decomposition of the triangle $ABC$ into $n$ subtriangles with each subtriangle similar to $\triangle ABC$. Determine the positive integers that are decomposable numbers for every triangle.

2017 Iranian Geometry Olympiad, 3

Tags: geometry
On the plane, $n$ points are given ($n>2$). No three of them are collinear. Through each two of them the line is drawn, and among the other given points, the one nearest to this line is marked (in each case this point occurred to be unique). What is the maximal possible number of marked points for each given $n$? [i]Proposed by Boris Frenkin (Russia)[/i]

2007 Federal Competition For Advanced Students, Part 2, 3

The triangle $ ABC$ with the circumcircle $ k(U,r)$ is given. On the extension of the radii $ UA$ a point $ P$ is chosen. The reflection of the line $ PB$ on the line $ BA$ is called $ g$. Likewise the reflection of the line $ PC$ on the line $ CA$ is called $ h$. The intersection of $ g$ and $ h$ is called $ Q$. Find the geometric location of all possible intersections $ Q$, while $ P$ passes through the extension of the radii $ UA$.

2010 Kazakhstan National Olympiad, 1

Triangle $ABC$ is given. Circle $ \omega $ passes through $B$, touch $AC$ in $D$ and intersect sides $AB$ and $BC$ at $P$ and $Q$ respectively. Line $PQ$ intersect $BD$ and $AC$ at $M$ and $N$ respectively. Prove that $ \omega $, circumcircle of $DMN$ and circle, touching $PQ$ in $M$ and passes through B, intersects in one point.

2012 Oral Moscow Geometry Olympiad, 1

In trapezoid $ABCD$, the sides $AD$ and $BC$ are parallel, and $AB = BC = BD$. The height $BK$ intersects the diagonal $AC$ at $M$. Find $\angle CDM$.

2013 AMC 12/AHSME, 9

In $\triangle ABC$, $AB=AC=28$ and $BC=20$. Points $D,E,$ and $F$ are on sides $\overline{AB}$, $\overline{BC}$, and $\overline{AC}$, respectively, such that $\overline{DE}$ and $\overline{EF}$ are parallel to $\overline{AC}$ and $\overline{AB}$, respectively. What is the perimeter of parallelogram $ADEF$? [asy] size(180); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); real r=5/7; pair A=(10,sqrt(28^2-100)),B=origin,C=(20,0),D=(A.x*r,A.y*r); pair bottom=(C.x+(D.x-A.x),C.y+(D.y-A.y)); pair E=extension(D,bottom,B,C); pair top=(E.x+D.x,E.y+D.y); pair F=extension(E,top,A,C); draw(A--B--C--cycle^^D--E--F); dot(A^^B^^C^^D^^E^^F); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,W); label("$E$",E,S); label("$F$",F,dir(0)); [/asy] $\textbf{(A) }48\qquad \textbf{(B) }52\qquad \textbf{(C) }56\qquad \textbf{(D) }60\qquad \textbf{(E) }72\qquad$

2017 Estonia Team Selection Test, 9

Tags: geometry
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if $\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and $\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar. Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.

KoMaL A Problems 2019/2020, A. 779

Two circles are given in the plane, $\Omega$ and inside it $\omega$. The center of $\omega$ is $I$. $P$ is a point moving on $\Omega$. The second intersection of the tangents from $P$ to $\omega$ and circle $\Omega$ are $Q$ and $R.$ The second intersection of circle $IQR$ and lines $PI$, $PQ$ and $PR$ are $J$, $S$ and $T,$ respectively. The reflection of point $J$ across line $ST$ is $K.$ Prove that lines $PK$ are concurrent.

2005 France Team Selection Test, 5

Let $ABC$ be a triangle such that $BC=AC+\frac{1}{2}AB$. Let $P$ be a point of $AB$ such that $AP=3PB$. Show that $\widehat{PAC} = 2 \widehat{CPA}.$