Found problems: 25757
2020 Baltic Way, 15
On a plane, Bob chooses 3 points $A_0$, $B_0$, $C_0$ (not necessarily distinct) such that $A_0B_0+B_0C_0+C_0A_0=1$. Then he chooses points $A_1$, $B_1$, $C_1$ (not necessarily distinct) in such a way that $A_1B_1=A_0B_0$ and $B_1C_1=B_0C_0$.
Next he chooses points $A_2$, $B_2$, $C_2$ as a permutation of points $A_1$, $B_1$, $C_1$. Finally, Bob chooses points $A_3$, $B_3$, $C_3$ (not necessarily distinct) in such a way that $A_3B_3=A_2B_2$ and $B_3C_3=B_2C_2$. What are the smallest and the greatest possible values of $A_3B_3+B_3C_3+C_3A_3$ Bob can obtain?
2007 Iran MO (3rd Round), 5
Prove that for two non-zero polynomials $ f(x,y),g(x,y)$ with real coefficients the system:
\[ \left\{\begin{array}{c}f(x,y)\equal{}0\\ g(x,y)\equal{}0\end{array}\right.\]
has finitely many solutions in $ \mathbb C^{2}$ if and only if $ f(x,y)$ and $ g(x,y)$ are coprime.
2022 Taiwan TST Round 3, G
Find all integers $n\geq 3$ for which every convex equilateral $n$-gon of side length $1$ contains an equilateral triangle of side length $1$. (Here, polygons contain their boundaries.)
2023 Auckland Mathematical Olympiad, 2
Triangle $ABC$ of area $1$ is given. Point $A'$ lies on the extension of side $BC$ beyond point $C$ with $BC = CA'$. Point $B'$ lies on extension of side $CA$ beyond $A$ and $CA = AB'$. $C'$ lies on extension of $AB$ beyond $B$ with $AB = BC'$. Find the area of triangle $A'B'C'$.
2009 Federal Competition For Advanced Students, P1, 4
Let $D, E$, and $F$ be respectively the midpoints of the sides $BC, CA$, and $AB$ of $\vartriangle ABC$. Let $H_a, H_b, H_c$ be the feet of perpendiculars from $A, B, C$ to the opposite sides, respectively. Let $P, Q, R$ be the midpoints of the $H_bH_c, H_cH_a$, and $H_aH_b$ respectively. Prove that $PD, QE$, and $RF$ are concurrent.
2019 Regional Olympiad of Mexico West, 2
Given a square $ABCD$, points $E$ and $F$ are taken inside the segments $BC$ and $CD$ so that $\angle EAF = 45^o$. The lines $AE$ and $AF$ intersect the circle circumscribed to the square at points $G$ and $H$ respectively. Prove that lines $EF$ and $GH$ are parallel.
1988 IMO Longlists, 21
Let "AB" and $CD$ be two perpendicular chords of a circle with centre $O$ and radius $r$ and let $X,Y,Z,W$ denote the cyclical order of the four parts into which the disc is thus divided. Find the maximum and minimum of the quantity \[ \frac{A(X) + A(Z)}{A(Y) + A(W)}, \] where $A(U)$ denotes the area of $U.$
2006 USAMO, 6
Let $ABCD$ be a quadrilateral, and let $E$ and $F$ be points on sides $AD$ and $BC$, respectively, such that $\frac{AE}{ED} = \frac{BF}{FC}$. Ray $FE$ meets rays $BA$ and $CD$ at $S$ and $T$, respectively. Prove that the circumcircles of triangles $SAE$, $SBF$, $TCF$, and $TDE$ pass through a common point.
2016 India Regional Mathematical Olympiad, 6
$ABC$ is an equilateral triangle with side length $11$ units. Consider the points $P_1,P_2, \dots, P_10$ dividing segment $BC$ into $11$ parts of unit length. Similarly, define $Q_1, Q_2, \dots, Q_10$ for the side $CA$ and $R_1,R_2,\dots, R_10$ for the side $AB$. Find the number of triples $(i,j,k)$ with $i,j,k \in \{1,2,\dots,10\}$ such that the centroids of triangles $ABC$ and $P_iQ_jR_k$ coincide.
1969 IMO Shortlist, 5
$(BEL 5)$ Let $G$ be the centroid of the triangle $OAB.$
$(a)$ Prove that all conics passing through the points $O,A,B,G$ are hyperbolas.
$(b)$ Find the locus of the centers of these hyperbolas.
DMM Team Rounds, 2014
[b]p1.[/b] Steven has just learned about polynomials and he is struggling with the following problem: expand $(1-2x)^7$ as $a_0 +a_1x+...+a_7x^7$ . Help Steven solve this problem by telling him what $a_1 +a_2 +...+a_7$ is.
[b]p2.[/b] Each element of the set ${2, 3, 4, ..., 100}$ is colored. A number has the same color as any divisor of it. What is the maximum number of colors?
[b]p3.[/b] Fuchsia is selecting $24$ balls out of $3$ boxes. One box contains blue balls, one red balls and one yellow balls. They each have a hundred balls. It is required that she takes at least one ball from each box and that the numbers of balls selected from each box are distinct. In how many ways can she select the $24$ balls?
[b]p4.[/b] Find the perfect square that can be written in the form $\overline{abcd} - \overline{dcba}$ where $a, b, c, d$ are non zero digits and $b < c$. $\overline{abcd}$ is the number in base $10$ with digits $a, b, c, d$ written in this order.
[b]p5.[/b] Steven has $100$ boxes labeled from $ 1$ to $100$. Every box contains at most $10$ balls. The number of balls in boxes labeled with consecutive numbers differ by $ 1$. The boxes labeled $1,4,7,10,...,100$ have a total of $301$ balls. What is the maximum number of balls Steven can have?
[b]p6.[/b] In acute $\vartriangle ABC$, $AB=4$. Let $D$ be the point on $BC$ such that $\angle BAD = \angle CAD$. Let $AD$ intersect the circumcircle of $\vartriangle ABC$ at $X$. Let $\Gamma$ be the circle through $D$ and $X$ that is tangent to $AB$ at $P$. If $AP = 6$, compute $AC$.
[b]p7.[/b] Consider a $15\times 15$ square decomposed into unit squares. Consider a coloring of the vertices of the unit squares into two colors, red and blue such that there are $133$ red vertices. Out of these $133$, two vertices are vertices of the big square and $32$ of them are located on the sides of the big square. The sides of the unit squares are colored into three colors. If both endpoints of a side are colored red then the side is colored red. If both endpoints of a side are colored blue then the side is colored blue. Otherwise the side is colored green. If we have $196$ green sides, how many blue sides do we have?
[b]p8.[/b] Carl has $10$ piles of rocks, each pile with a different number of rocks. He notices that he can redistribute the rocks in any pile to the other $9$ piles to make the other $9$ piles have the same number of rocks. What is the minimum number of rocks in the biggest pile?
[b]p9.[/b] Suppose that Tony picks a random integer between $1$ and $6$ inclusive such that the probability that he picks a number is directly proportional to the the number itself. Danny picks a number between $1$ and $7$ inclusive using the same rule as Tony. What is the probability that Tony’s number is greater than Danny’s number?
[b]p10.[/b] Mike wrote on the board the numbers $1, 2, ..., n$. At every step, he chooses two of these numbers, deletes them and replaces them with the least prime factor of their sum. He does this until he is left with the number $101$ on the board. What is the minimum value of $n$ for which this is possible?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 Stars of Mathematics, 4
Let $ ABC $ be an acute triangle having $ AB<AC, $ let $ M $ be the midpoint of the segment $ BC, D$ be a point on the segment $ AM, E $ be a point on the segment $ BD $ and $ F $ on the line $ AB $ such that $ EF $ is parallel to $ BC, $ and such that $ AE $ and $ DF $ pass through the orthocenter of $ ABC. $
Prove that the interior bisectors of $ \angle BAC $ and $ \angle BDC, $ together with $ BC $ are concurrent.
[i]Vlad Robu[/i]
1995 AMC 12/AHSME, 8
In $\triangle ABC$, $\angle C = 90^\circ, AC = 6$ and $BC = 8$. Points $D$ and $E$ are on $\overline{AB}$ and $\overline{BC}$, respectively, and $\angle BED = 90^\circ$. If $DE = 4$, then $BD =$
[asy]
size(100); pathpen = linewidth(0.7); pointpen = black+linewidth(3);
pair A = (0,0), C = (6,0), B = (6,8), D = (2*A+B)/3, E = (2*C+B)/3; D(D("A",A,SW)--D("B",B,NW)--D("C",C,SE)--cycle); D(D("D",D,NW)--D("E",E,plain.E)); D(rightanglemark(D,E,B,16)); D(rightanglemark(A,C,B,16));[/asy]
$\mathbf{(A)}\;5\qquad
\mathbf{(B)}\;\frac{16}{3}\qquad
\mathbf{(C)}\; \frac{20}{3}\qquad
\mathbf{(D)}\; \frac{15}{2}\qquad
\mathbf{(E)}\; 8$
2007 Putnam, 5
Suppose that a finite group has exactly $ n$ elements of order $ p,$ where $ p$ is a prime. Prove that either $ n\equal{}0$ or $ p$ divides $ n\plus{}1.$
2005 ISI B.Stat Entrance Exam, 5
Consider an acute angled triangle $PQR$ such that $C,I$ and $O$ are the circumcentre, incentre and orthocentre respectively. Suppose $\angle QCR, \angle QIR$ and $\angle QOR$, measured in degrees, are $\alpha, \beta$ and $\gamma$ respectively. Show that \[\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}>\frac{1}{45}\]
Ukrainian TYM Qualifying - geometry, VII.12
Let $a, b$, and $c$ be the lengths of the sides of an arbitrary triangle, and let $\alpha,\beta$, and $\gamma$ be the radian measures of its corresponding angles. Prove that $$ \frac{\pi}{3}\le \frac{\alpha a +\beta b + \gamma c}{a+b+c} < \frac{\pi}{2}.$$ Suggest spatial analogues of this inequality.
2018 Austria Beginners' Competition, 2
Let $ABC$ be an acute-angled triangle, $M$ the midpoint of the side $AC$ and $F$ the foot on $AB$ of the altitude through the vertex $C$. Prove that $AM = AF$ holds if and only if $\angle BAC = 60^o$.
(Karl Czakler)
1990 Greece National Olympiad, 2
Let $ACBD$ be a asquare and $K,L,M,N$ be points of $AB,BC,CD,DA$ respectively. If $O$ is the center of the square , prove that the expression $$ \overrightarrow{OK}\cdot \overrightarrow{OL}+\overrightarrow{OL}\cdot\overrightarrow{OM}+\overrightarrow{OM}\cdot\overrightarrow{ON}+\overrightarrow{ON}\cdot\overrightarrow{OK}$$
is independent of positions of $K,L,M,N$, (i.e. is constant )
2010 China Team Selection Test, 2
Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.
1979 AMC 12/AHSME, 30
[asy]
/*Using regular asymptote, this diagram would take 30 min to make. Using cse5, this takes 5 minutes. Conclusion? CSE5 IS THE BEST PACKAGE EVER CREATED!!!!*/
size(100);
import cse5;
pathpen=black;
anglefontpen=black;
pointpen=black;
anglepen=black;
dotfactor=3;
pair A=(0,0),B=(0.5,0.5*sqrt(3)),C=(3,0),D=(1.7,0),EE;
EE=(B+C)/2;
D(MP("$A$",A,W)--MP("$B$",B,N)--MP("$C$",C,E)--cycle);
D(MP("$E$",EE,N)--MP("$D$",D,S));
D(D);D(EE);
MA("80^\circ",8,D,EE,C,0.1);
MA("20^\circ",8,EE,C,D,0.3,2,shift(1,3)*C);
draw(arc(shift(-0.1,0.05)*C,0.25,100,180),arrow =ArcArrow());
MA("100^\circ",8,A,B,C,0.1,0);
MA("60^\circ",8,C,A,B,0.1,0);
//Credit to TheMaskedMagician for the diagram
[/asy]
In $\triangle ABC$, $E$ is the midpoint of side $BC$ and $D$ is on side $AC$. If the length of $AC$ is $1$ and $\measuredangle BAC = 60^\circ$, $\measuredangle ABC = 100^\circ$, $\measuredangle ACB = 20^\circ$ and $\measuredangle DEC = 80^\circ$, then the area of $\triangle ABC$ plus twice the area of $\triangle CDE$ equals
$\textbf{(A) }\frac{1}{4}\cos 10^\circ\qquad\textbf{(B) }\frac{\sqrt{3}}{8}\qquad\textbf{(C) }\frac{1}{4}\cos 40^\circ\qquad\textbf{(D) }\frac{1}{4}\cos 50^\circ\qquad\textbf{(E) }\frac{1}{8}$
2009 AMC 12/AHSME, 16
Trapezoid $ ABCD$ has $ AD\parallel{}BC$, $ BD \equal{} 1$, $ \angle DBA \equal{} 23^{\circ}$, and $ \angle BDC \equal{} 46^{\circ}$. The ratio $ BC: AD$ is $ 9: 5$. What is $ CD$?
$ \textbf{(A)}\ \frac {7}{9}\qquad \textbf{(B)}\ \frac {4}{5}\qquad \textbf{(C)}\ \frac {13}{15} \qquad \textbf{(D)}\ \frac {8}{9}\qquad \textbf{(E)}\ \frac {14}{15}$
2022 Estonia Team Selection Test, 2
Let $ABCD$ be a parallelogram with $AC=BC.$ A point $P$ is chosen on the extension of ray $AB$ past $B.$ The circumcircle of $ACD$ meets the segment $PD$ again at $Q.$ The circumcircle of triangle $APQ$ meets the segment $PC$ at $R.$ Prove that lines $CD,AQ,BR$ are concurrent.
2003 Junior Balkan Team Selection Tests - Romania, 4
Let $E$ be the midpoint of the side $CD$ of a square $ABCD$. Consider the point $M$ inside the square such that $\angle MAB = \angle MBC = \angle BME = x$. Find the angle $x$.
2015 South East Mathematical Olympiad, 5
Given two points $E$ and $F$ lie on segment $AB$ and $AD$, respectively. Let the segments $BF$ and $DE$ intersects at point $C$. If it’s known that $AE+EC=AF+FC$, show that $AB+BC=AD+DC$.
2003 Tournament Of Towns, 1
There is $3 \times 4 \times 5$ - box with its faces divided into $1 \times 1$ - squares. Is it possible to place numbers in these squares so that the sum of numbers in every stripe of squares (one square wide) circling the box, equals $120$?