This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2007 IMO Shortlist, 7

Given an acute triangle $ ABC$ with $ \angle B > \angle C$. Point $ I$ is the incenter, and $ R$ the circumradius. Point $ D$ is the foot of the altitude from vertex $ A$. Point $ K$ lies on line $ AD$ such that $ AK \equal{} 2R$, and $ D$ separates $ A$ and $ K$. Lines $ DI$ and $ KI$ meet sides $ AC$ and $ BC$ at $ E,F$ respectively. Let $ IE \equal{} IF$. Prove that $ \angle B\leq 3\angle C$. [i]Author: Davoud Vakili, Iran[/i]

2024 Yasinsky Geometry Olympiad, 4

Let \( \omega \) be the circumcircle of triangle \( ABC \), where \( AB > AC \). Let \( N \) be the midpoint of arc \( \smile\!BAC \), and \( D \) a point on the circle \( \omega \) such that \( ND \perp AB \). Let \( I \) be the incenter of triangle \( ABC \). Reconstruct triangle \( ABC \), given the marked points \( A, D, \) and \( I \). Proposed by Oleksii Karlyuchenko and Hryhorii Filippovskyi

2006 IberoAmerican, 1

In a scalene triangle $ABC$ with $\angle A = 90^\circ,$ the tangent line at $A$ to its circumcircle meets line $BC$ at $M$ and the incircle touches $AC$ at $S$ and $AB$ at $R.$ The lines $RS$ and $BC$ intersect at $N,$ while the lines $AM$ and $SR$ intersect at $U.$ Prove that the triangle $UMN$ is isosceles.

2012 Sharygin Geometry Olympiad, 8

A point $M$ lies on the side $BC$ of square $ABCD$. Let $X$, $Y$ , and $Z$ be the incenters of triangles $ABM$, $CMD$, and $AMD$ respectively. Let $H_x$, $H_y$, and $H_z$ be the orthocenters of triangles $AXB$, $CY D$, and $AZD$. Prove that $H_x$, $H_y$, and $H_z$ are collinear.

2012 Brazil National Olympiad, 2

$ABC$ is a non-isosceles triangle. $T_A$ is the tangency point of incircle of $ABC$ in the side $BC$ (define $T_B$,$T_C$ analogously). $I_A$ is the ex-center relative to the side BC (define $I_B$,$I_C$ analogously). $X_A$ is the mid-point of $I_BI_C$ (define $X_B$,$X_C$ analogously). Show that $X_AT_A$,$X_BT_B$,$X_CT_C$ meet in a common point, colinear with the incenter and circumcenter of $ABC$.

2004 USAMO, 1

Let $ABCD$ be a quadrilateral circumscribed about a circle, whose interior and exterior angles are at least 60 degrees. Prove that \[ \frac{1}{3}|AB^3 - AD^3| \le |BC^3 - CD^3| \le 3|AB^3 - AD^3|. \] When does equality hold?

2013 ELMO Shortlist, 1

Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the [i]David Yang triangle[/i] of $ABC$ and let $XYZ$ be the [i]Scott Wu triangle[/i] of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral. [i]Proposed by Owen Goff[/i]

2014 South East Mathematical Olympiad, 1

Let $ABC$ be a triangle with $AB<AC$ and let $M $ be the midpoint of $BC$. $MI$ ($I$ incenter) intersects $AB$ at $D$ and $CI$ intersects the circumcircle of $ABC$ at $E$. Prove that $\frac{ED }{ EI} = \frac{IB }{IC}$ [img]https://cdn.artofproblemsolving.com/attachments/0/5/4639d82d183247b875128a842a013ed7415fba.jpg[/img] [hide=.][url=http://artofproblemsolving.com/community/c6h602657p10667541]source[/url], translated by Antreas Hatzipolakis in fb, corrected by me in order to be compatible with it's figure[/hide]

2010 National Olympiad First Round, 29

Let $I$ be the incenter of $\triangle ABC$, and $O$ be the excenter corresponding to $B$. If $|BI|=12$, $|IO|=18$, and $|BC|=15$, then what is $|AB|$? $ \textbf{(A)}\ 16 \qquad\textbf{(B)}\ 18 \qquad\textbf{(C)}\ 20 \qquad\textbf{(D)}\ 22 \qquad\textbf{(E)}\ 24 $

2015 Iran Team Selection Test, 2

In triangle $ABC$(with incenter $I$) let the line parallel to $BC$ from $A$ intersect circumcircle of $\triangle ABC$ at $A_1$ let $AI\cap BC=D$ and $E$ is tangency point of incircle with $BC$ let $ EA_1\cap \odot (\triangle ADE)=T$ prove that $AI=TI$.

2017 India IMO Training Camp, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2014 Thailand TSTST, 3

Let $O$ be the incenter of a tangential quadrilateral $ABCD$. Prove that the orthocenters of $\vartriangle AOB$, $\vartriangle BOC$, $\vartriangle COD$, $\vartriangle DOA$ lie on a line.

2024 Yasinsky Geometry Olympiad, 4

Let \( I \) and \( M \) be the incenter and the centroid of a scalene triangle \( ABC \), respectively. A line passing through point \( I \) parallel to \( BC \) intersects \( AC \) and \( AB \) at points \( E \) and \( F \), respectively. Reconstruct triangle \( ABC \) given only the marked points \( E, F, I, \) and \( M \). [i]Proposed by Hryhorii Filippovskyi[/i]

2008 Sharygin Geometry Olympiad, 13

Tags: geometry , incenter
(A.Myakishev, 9--10) Given triangle $ ABC$. One of its excircles is tangent to the side $ BC$ at point $ A_1$ and to the extensions of two other sides. Another excircle is tangent to side $ AC$ at point $ B_1$. Segments $ AA_1$ and $ BB_1$ meet at point $ N$. Point $ P$ is chosen on the ray $ AA_1$ so that $ AP\equal{}NA_1$. Prove that $ P$ lies on the incircle.

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $ABC$ be an isosceles triangle with $AB=AC$. Consider a variable point $P$ on the extension of the segment $BC$ beyound $B$ (in other words, $P$ lies on the line $BC$ such that the point $B$ lies inside the segment $PC$). Let $r_{1}$ be the radius of the incircle of the triangle $APB$, and let $r_{2}$ be the radius of the $P$-excircle of the triangle $APC$. Prove that the sum $r_{1}+r_{2}$ of these two radii remains constant when the point $P$ varies. [i]Remark.[/i] The $P$-excircle of the triangle $APC$ is defined as the circle which touches the side $AC$ and the [i]extensions[/i] of the sides $AP$ and $CP$.

2018 Thailand Mathematical Olympiad, 9

In $\vartriangle ABC$ the incircle is tangent to $AB$ at $D$. Let $P$ be a point on $BC$ different from $B$ and $C$, and let $K$ and $L$ be incenters of $\vartriangle ABP$ and $\vartriangle ACP$ respectively. Suppose that the circumcircle of $\vartriangle KP L$ cuts $AP$ again at $Q$. Prove that $AD = AQ$.

2024 Centroamerican and Caribbean Math Olympiad, 4

Let $ABC$ be a triangle, $I$ its incenter, and $\Gamma$ its circumcircle. Let $D$ be the second point of intersection of $AI$ with $\Gamma$. The line parallel to $BC$ through $I$ intersects $AB$ and $AC$ at $P$ and $Q$, respectively. The lines $PD$ and $QD$ intersect $BC$ at $E$ and $F$, respectively. Prove that triangles $IEF$ and $ABC$ are similar.

2020 Hong Kong TST, 1

Let $\Delta ABC$ be an acute triangle with incenter $I$ and orthocenter $H$. $AI$ meets the circumcircle of $\Delta ABC$ again at $M$. Suppose the length $IM$ is exactly the circumradius of $\Delta ABC$. Show that $AH\geq AI$.

2019 Girls in Mathematics Tournament, 2

Let $ABC$ be a right triangle with hypotenuse $BC$ and center $I$. Let bisectors of the angles $\angle B$ and $\angle C$ intersect the sides $AC$ and $AB$ in$ D$ and $E$, respectively. Let $P$ and $Q$ be the feet of the perpendiculars of the points $D$ and $E$ on the side $BC$. Prove that $I$ is the circumcenter of $APQ$.

2021 Junior Macedonian Mathematical Olympiad, Problem 5

Tags: incenter , geometry , ratio
Let $ABC$ be an acute triangle and let $X$ and $Y$ be points on the segments $AB$ and $AC$ such that $BX = CY$. If $I_{B}$ and $I_{C}$ are centers of inscribed circles in triangles $ABY$ and $ACX$, and $T$ is the second intersection point of the circumcircles of $ABY$ and $ACX$, show that: $$\frac{TI_{B}}{TI_{C}} = \frac{BY}{CX}.$$ [i]Proposed by Nikola Velov[/i]

2009 VJIMC, Problem 1

Tags: incenter , geometry , limit
Let $ABC$ be a non-degenerate triangle in the euclidean plane. Define a sequence $(C_n)_{n=0}^\infty$ of points as follows: $C_0:=C$, and $C_{n+1}$ is the incenter of the triangle $ABC_n$. Find $\lim_{n\to\infty}C_n$.

2019 EGMO, 4

Let $ABC$ be a triangle with incentre $I$. The circle through $B$ tangent to $AI$ at $I$ meets side $AB$ again at $P$. The circle through $C$ tangent to $AI$ at $I$ meets side $AC$ again at $Q$. Prove that $PQ$ is tangent to the incircle of $ABC.$

2008 IMO Shortlist, 7

Let $ ABCD$ be a convex quadrilateral with $ BA\neq BC$. Denote the incircles of triangles $ ABC$ and $ ADC$ by $ \omega_{1}$ and $ \omega_{2}$ respectively. Suppose that there exists a circle $ \omega$ tangent to ray $ BA$ beyond $ A$ and to the ray $ BC$ beyond $ C$, which is also tangent to the lines $ AD$ and $ CD$. Prove that the common external tangents to $ \omega_{1}$ and $\omega_{2}$ intersect on $ \omega$. [i]Author: Vladimir Shmarov, Russia[/i]

2011 Tournament of Towns, 1

$P$ and $Q$ are points on the longest side $AB$ of triangle $ABC$ such that $AQ = AC$ and $BP = BC$. Prove that the circumcentre of triangle $CPQ$ coincides with the incentre of triangle $ABC$.

1994 India Regional Mathematical Olympiad, 2

In a triangle $ABC$, the incircle touches the sides $BC, CA, AB$ at $D, E, F$ respectively. If the radius if the incircle is $4$ units and if $BD, CE , AF$ are consecutive integers, find the sides of the triangle $ABC$.