Found problems: 1389
2017 Romania National Olympiad, 1
Prove that the line joining the centroid and the incenter of a non-isosceles triangle is perpendicular to the base if and only if the sum of the other two sides is thrice the base.
2020 Durer Math Competition Finals, 4
Let $ABC$ be a scalene triangle and its incentre $I$. Denote by $F_A$ the intersection of the line $BC$ and the perpendicular to the angle bisector at $A$ through $I$. Let us define points $F_B$ and $F_C$ in a similar manner. Prove that points $F_A, F_B$ and $F_C$ are collinear.
2012 Olympic Revenge, 6
Let $ABC$ be an scalene triangle and $I$ and $H$ its incenter, ortocenter respectively.
The incircle touchs $BC$, $CA$ and $AB$ at $D,E$ an $F$. $DF$ and $AC$ intersects at $K$ while $EF$ and $BC$ intersets at $M$.
Shows that $KM$ cannot be paralel to $IH$.
PS1: The original problem without the adaptation apeared at the Brazilian Olympic Revenge 2011 but it was incorrect.
PS2:The Brazilian Olympic Revenge is a competition for teachers, and the problems are created by the students.
Sorry if I had some English mistakes here.
2007 Indonesia TST, 1
Given triangle $ ABC$ and its circumcircle $ \Gamma$, let $ M$ and $ N$ be the midpoints of arcs $ BC$ (that does not contain $ A$) and $ CA$ (that does not contain $ B$), repsectively. Let $ X$ be a variable point on arc $ AB$ that does not contain $ C$. Let $ O_1$ and $ O_2$ be the incenter of triangle $ XAC$ and $ XBC$, respectively. Let the circumcircle of triangle $ XO_1O_2$ meets $ \Gamma$ at $ Q$.
(a) Prove that $ QNO_1$ and $ QMO_2$ are similar.
(b) Find the locus of $ Q$ as $ X$ varies.
1997 Bosnia and Herzegovina Team Selection Test, 2
In isosceles triangle $ABC$ with base side $AB$, on side $BC$ it is given point $M$. Let $O$ be a circumcenter and $S$ incenter of triangle $ABC$. Prove that $$ SM \mid \mid AC \Leftrightarrow OM \perp BS$$
2004 All-Russian Olympiad, 3
Let $ ABCD$ be a quadrilateral which is a cyclic quadrilateral and a tangent quadrilateral simultaneously. (By a [i]tangent quadrilateral[/i], we mean a quadrilateral that has an incircle.)
Let the incircle of the quadrilateral $ ABCD$ touch its sides $ AB$, $ BC$, $ CD$, and $ DA$ in the points $ K$, $ L$, $ M$, and $ N$, respectively. The exterior angle bisectors of the angles $ DAB$ and $ ABC$ intersect each other at a point $ K^{\prime}$. The exterior angle bisectors of the angles $ ABC$ and $ BCD$ intersect each other at a point $ L^{\prime}$. The exterior angle bisectors of the angles $ BCD$ and $ CDA$ intersect each other at a point $ M^{\prime}$. The exterior angle bisectors of the angles $ CDA$ and $ DAB$ intersect each other at a point $ N^{\prime}$. Prove that the straight lines $ KK^{\prime}$, $ LL^{\prime}$, $ MM^{\prime}$, and $ NN^{\prime}$ are concurrent.
1999 Hong kong National Olympiad, 2
Let $I$ be the incentre and $O$ the circumcentre of a non-equilateral triangle $ABC$. Prove that $\angle AIO \le 90^{\circ}$ if and only if $2BC\le AB+AC$.
2006 Kyiv Mathematical Festival, 4
See all the problems from 5-th Kyiv math festival
[url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url]
Let $O$ be the circumcenter and $H$ be the intersection point of the altitudes of acute triangle $ABC.$ The straight lines $BH$ and $CH$ intersect the segments $CO$ and $BO$ at points $D$ and $E$ respectively. Prove that if triangles $ODH$ and $OEH$ are isosceles then triangle $ABC$ is isosceles too.
2020-IMOC, G4
Let $I$ be the incenter of triangle $ABC$. Let $BI$ and $AC$ intersect at $E$, and $CI$ and $AB$ intersect at $F$. Suppose that $R$ is another intersection of $\odot (ABC)$ and $\odot (AEF)$. Let $M$ be the midpoint of $BC$, and $P, Q$ are the intersections of $AI, MI$ and $EF$, respectively. Show that $A, P, Q, R$ are concyclic.
(ltf0501).
2011 IMAC Arhimede, 4
Inscribed circle of triangle $ABC$ touches sides $BC$, $CA$ and $AB$ at the points $X$, $Y$ and $Z$, respectively. Let $AA_{1}$, $BB_{1}$ and $CC_{1}$ be the altitudes of the triangle $ABC$ and $M$, $N$ and $P$ be the incenters of triangles $AB_{1}C_{1}$, $BC_{1}A_{1}$ and $CA_{1}B_{1}$, respectively.
a) Prove that $M$, $N$ and $P$ are orthocentres of triangles $AYZ$, $BZX$ and $CXY$, respectively.
b) Prove that common external tangents of these incircles, different from triangle sides, are concurent at orthocentre of triangle $XYZ$.
2018 Dutch IMO TST, 4
In a non-isosceles triangle $ABC$ the centre of the incircle is denoted by $I$. The other intersection point of the angle bisector of $\angle BAC$ and the circumcircle of $\vartriangle ABC$ is $D$. The line through $I$ perpendicular to $AD$ intersects $BC$ in $F$. The midpoint of the circle arc $BC$ on which $A$ lies, is denoted by $M$. The other intersection point of the line $MI$ and the circle through $B, I$ and $C$, is denoted by $N$. Prove that $FN$ is tangent to the circle through $B, I$ and $C$.
2017 China Second Round Olympiad, 1
Given an isocleos triangle $ABC$ with equal sides $AB=AC$ and incenter $I$.Let $\Gamma_1$be the circle centered at $A$ with radius $AB$,$\Gamma_2$ be the circle centered at $I$ with radius $BI$.A circle $\Gamma_3$ passing through $B,I$ intersects $\Gamma_1$,$\Gamma_2$ again at $P,Q$ (different from $B$) respectively.Let $R$ be the intersection of $PI$ and $BQ$.Show that $BR \perp CR$.
2010 International Zhautykov Olympiad, 3
Let $ABC$ arbitrary triangle ($AB \neq BC \neq AC \neq AB$) And O,I,H it's circum-center, incenter and ortocenter (point of intersection altitudes). Prove, that
1) $\angle OIH > 90^0$(2 points)
2)$\angle OIH >135^0$(7 points)
balls for 1) and 2) not additive.
2001 AIME Problems, 12
A sphere is inscribed in the tetrahedron whose vertices are $A=(6,0,0), B=(0,4,0), C=(0,0,2),$ and $D=(0,0,0).$ The radius of the sphere is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2012 Balkan MO Shortlist, G4
Let $M$ be the point of intersection of the diagonals of a cyclic quadrilateral $ABCD$. Let $I_1$ and $I_2$ are the incenters of triangles $AMD$ and $BMC$, respectively, and let $L$ be the point of intersection of the lines $DI_1$ and $CI_2$. The foot of the perpendicular from the midpoint $T$ of $I_1I_2$ to $CL$ is $N$, and $F$ is the midpoint of $TN$. Let $G$ and $J$ be the points of intersection of the line $LF$ with $I_1N$ and $I_1I_2$, respectively. Let $O_1$ be the circumcenter of triangle $LI_1J$, and let $\Gamma_1$ and $\Gamma_2$ be the circles with diameters $O_1L$ and $O_1J$, respectively. Let $V$ and $S$ be the second points of intersection of $I_1O_1$ with $\Gamma_1$ and $\Gamma_2$, respectively. If $K$ is point where the circles $\Gamma_1$ and $\Gamma_2$ meet again, prove that $K$ is the circumcenter of the triangle $SVG$.
2006 Sharygin Geometry Olympiad, 10.6
A quadrangle was drawn on the board, that you can inscribe and circumscribe a circle. Marked are the centers of these circles and the intersection point of the lines connecting the midpoints of the opposite sides, after which the quadrangle itself was erased. Restore it with a compass and ruler.
Kyiv City MO Juniors Round2 2010+ geometry, 2013.9.5
Given a triangle $ ABC $, $ AD $ is its angle bisector. Let $ E, F $ be the centers of the circles inscribed in the triangles $ ADC $ and $ ADB $, respectively. Denote by $ \omega $, the circle circumscribed around the triangle $ DEF $, and by $ Q $, the intersection point of $ BE $ and $ CF $, and $ H, J, K, M $ , respectively the second intersection point of the lines $ CE, CF, BE, BF $ with circle $ \omega $. Let $\omega_1, \omega_2 $ the circles be circumscribed around the triangles $ HQJ $ and $ KQM $ Prove that the intersection point of the circles $\omega_1, \omega_2 $ different from $ Q $ lies on the line $ AD $.
(Kivva Bogdan)
2004 Balkan MO, 3
Let $O$ be an interior point of an acute triangle $ABC$. The circles with centers the midpoints of its sides and passing through $O$ mutually intersect the second time at the points $K$, $L$ and $M$ different from $O$. Prove that $O$ is the incenter of the triangle $KLM$ if and only if $O$ is the circumcenter of the triangle $ABC$.
2012 IberoAmerican, 2
Let $ABC$ be a triangle, $P$ and $Q$ the intersections of the parallel line to $BC$ that passes through $A$ with the external angle bisectors of angles $B$ and $C$, respectively. The perpendicular to $BP$ at $P$ and the perpendicular to $CQ$ at $Q$ meet at $R$. Let $I$ be the incenter of $ABC$. Show that $AI = AR$.
1983 AMC 12/AHSME, 28
Triangle $\triangle ABC$ in the figure has area $10$. Points $D$, $E$ and $F$, all distinct from $A$, $B$ and $C$, are on sides $AB$, $BC$ and $CA$ respectively, and $AD = 2$, $DB = 3$. If triangle $\triangle ABE$ and quadrilateral $DBEF$ have equal areas, then that area is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair A=origin, B=(10,0), C=(8,7), F=7*dir(A--C), E=(10,0)+4*dir(B--C), D=4*dir(A--B);
draw(A--B--C--A--E--F--D);
pair point=incenter(A,B,C);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$2$", (2,0), S);
label("$3$", (7,0), S);[/asy]
$ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ \frac{5}{3}\sqrt{10}\qquad\textbf{(E)}\ \text{not uniquely determined}$
2025 Israel TST, P2
Triangle $\triangle ABC$ is inscribed in circle $\Omega$. Let $I$ denote its incenter and $I_A$ its $A$-excenter. Let $N$ denote the midpoint of arc $BAC$. Line $NI_A$ meets $\Omega$ a second time at $T$. The perpendicular to $AI$ at $I$ meets sides $AC$ and $AB$ at $E$ and $F$ respectively. The circumcircle of $\triangle BFT$ meets $BI_A$ a second time at $P$, and the circumcircle of $\triangle CET$ meets $CI_A$ a second time at $Q$. Prove that $PQ$ passes through the antipodal to $A$ on $\Omega$.
2010 Korea - Final Round, 2
Let $ I$ be the incentre and $ O$ the circumcentre of a given acute triangle $ ABC$. The incircle is tangent to $ BC$ at $ D$. Assume that $ \angle B < \angle C$ and the segments $ AO$ and $ HD$ are parallel, where $H$ is the orthocentre of triangle $ABC$. Let the intersection of the line $ OD$ and $ AH$ be $ E$. If the midpoint of $ CI$ is $ F$, prove that $ E,F,I,O$ are concyclic.
2012 Online Math Open Problems, 24
In scalene $\triangle ABC$, $I$ is the incenter, $I_a$ is the $A$-excenter, $D$ is the midpoint of arc $BC$ of the circumcircle of $ABC$ not containing $A$, and $M$ is the midpoint of side $BC$. Extend ray $IM$ past $M$ to point $P$ such that $IM = MP$. Let $Q$ be the intersection of $DP$ and $MI_a$, and $R$ be the point on the line $MI_a$ such that $AR\parallel DP$. Given that $\frac{AI_a}{AI}=9$, the ratio $\frac{QM} {RI_a}$ can be expressed in the form $\frac{m}{n}$ for two relatively prime positive integers $m,n$. Compute $m+n$.
[i]Ray Li.[/i]
[hide="Clarifications"][list=1][*]"Arc $BC$ of the circumcircle" means "the arc with endpoints $B$ and $C$ not containing $A$".[/list][/hide]
2000 Poland - Second Round, 4
Point $I$ is incenter of triangle $ABC$ in which $AB \neq AC$. Lines $BI$ and $CI$ intersect sides $AC$ and $AB$ in points $D$ and $E$, respectively. Determine all measures of angle $BAC$, for which may be $DI = EI$.
2023 Bulgaria JBMO TST, 3
Let $ABC$ be a non-isosceles triangle with circumcircle $k$, incenter $I$ and $C$-excenter $I_C$. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of arc $\widehat{ACB}$ on $k$. Prove that $\angle IMI_C + \angle INI_C = 180^{\circ}$.