This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

1997 Pre-Preparation Course Examination, 2

Let $P$ be a variable point on arc $BC$ of the circumcircle of triangle $ABC$ not containing $A$. Let $I_1$ and $I_2$ be the incenters of the triangles $PAB$ and $PAC$, respectively. Prove that: [b](a)[/b] The circumcircle of $?PI_1I_2$ passes through a fixed point. [b](b)[/b] The circle with diameter $I_1I_2$ passes through a fixed point. [b](c)[/b] The midpoint of $I_1I_2$ lies on a fixed circle.

2019 Federal Competition For Advanced Students, P1, 2

Let $ABC$ be a triangle and $I$ its incenter. The circle passing through $A, C$ and $I$ intersect the line $BC$ for second time at point $X$. The circle passing through $B, C$ and $I$ intersects the line $AC$ for second time at point $Y$. Show that the segments $AY$ and $BX$ have equal length.

2013 Turkey Team Selection Test, 3

Let $O$ be the circumcenter and $I$ be the incenter of an acute triangle $ABC$ with $m(\widehat{B}) \neq m(\widehat{C})$. Let $D$, $E$, $F$ be the midpoints of the sides $[BC]$, $[CA]$, $[AB]$, respectively. Let $T$ be the foot of perpendicular from $I$ to $[AB]$. Let $P$ be the circumcenter of the triangle $DEF$ and $Q$ be the midpoint of $[OI]$. If $A$, $P$, $Q$ are collinear, prove that \[\dfrac{|AO|}{|OD|}-\dfrac{|BC|}{|AT|}=4.\]

Russian TST 2021, P3

Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Gamma$. Circles $\omega_{B}$ passing through $B$ and $\omega_{C}$ passing through $C$ are tangent at $I$. Let $\omega_{B}$ meet minor arc $AB$ of $\Gamma$ at $P$ and $AB$ at $M\neq B$, and let $\omega_{C}$ meet minor arc $AC$ of $\Gamma$ at $Q$ and $AC$ at $N\neq C$. Rays $PM$ and $QN$ meet at $X$. Let $Y$ be a point such that $YB$ is tangent to $\omega_{B}$ and $YC$ is tangent to $\omega_{C}$. Show that $A,X,Y$ are collinear.

2005 Oral Moscow Geometry Olympiad, 6

Let $A_1,B_1,C_1$ are the midpoints of the sides of the triangle $ABC, I$ is the center of the circle inscribed in it. Let $C_2$ be the intersection point of lines $C_1 I$ and $A_1B_1$. Let $C_3$ be the intersection point of lines $CC_2$ and $AB$. Prove that line $IC_3$ is perpendicular to line $AB$. (A. Zaslavsky)

2018 JBMO Shortlist, G4

Let $ABC$ be a triangle with side-lengths $a, b, c$, inscribed in a circle with radius $R$ and let $I$ be ir's incenter. Let $P_1, P_2$ and $P_3$ be the areas of the triangles $ABI, BCI$ and $CAI$, respectively. Prove that $$\frac{R^4}{P_1^2}+\frac{R^4}{P_2^2}+\frac{R^4}{P_3^2}\ge 16$$

1974 IMO Longlists, 4

Let $K_a,K_b,K_c$ with centres $O_a,O_b,O_c$ be the excircles of a triangle $ABC$, touching the interiors of the sides $BC,CA,AB$ at points $T_a,T_b,T_c$ respectively. Prove that the lines $O_aT_a,O_bT_b,O_cT_c$ are concurrent in a point $P$ for which $PO_a=PO_b=PO_c=2R$ holds, where $R$ denotes the circumradius of $ABC$. Also prove that the circumcentre $O$ of $ABC$ is the midpoint of the segment $PI$, where $I$ is the incentre of $ABC$.

2023 Korea Summer Program Practice Test, P3

$\triangle ABC$ is a triangle such that $\angle A = 60^{\circ}$. The incenter of $\triangle ABC$ is $I$. $AI$ intersects with $BC$ at $D$, $BI$ intersects with $CA$ at $E$, and $CI$ intersects with $AB$ at $F$, respectively. Also, the circumcircle of $\triangle DEF$ is $\omega$. The tangential line of $\omega$ at $E$ and $F$ intersects at $T$. Show that $\angle BTC \ge 60^{\circ}$

1991 India National Olympiad, 5

Tags: incenter , geometry
Triangle $ABC$ has an incenter $I$. Let points $X$, $Y$ be located on the line segments $AB$, $AC$ respectively, so that $BX \cdot AB = IB^2$ and $CY \cdot AC = IC^2$. Given that the points $X, I, Y$ lie on a straight line, find the possible values of the measure of angle $A$.

2013 National Olympiad First Round, 1

Let $ABC$ be a triangle with incenter $I$, centroid $G$, and $|AC|>|AB|$. If $IG\parallel BC$, $|BC|=2$, and $Area(ABC)=3\sqrt 5 / 8$, then what is $|AB|$? $ \textbf{(A)}\ \dfrac 98 \qquad\textbf{(B)}\ \dfrac {11}8 \qquad\textbf{(C)}\ \dfrac {13}8 \qquad\textbf{(D)}\ \dfrac {15}8 \qquad\textbf{(E)}\ \dfrac {17}8 $

2008 Middle European Mathematical Olympiad, 3

Let $ ABC$ be an isosceles triangle with $ AC \equal{} BC.$ Its incircle touches $ AB$ in $ D$ and $ BC$ in $ E.$ A line distinct of $ AE$ goes through $ A$ and intersects the incircle in $ F$ and $ G.$ Line $ AB$ intersects line $ EF$ and $ EG$ in $ K$ and $ L,$ respectively. Prove that $ DK \equal{} DL.$

2019 Romania Team Selection Test, 2

Let $ A_1A_2A_3$ be a non-isosceles triangle with incenter $ I.$ Let $ C_i,$ $ i \equal{} 1, 2, 3,$ be the smaller circle through $ I$ tangent to $ A_iA_{i\plus{}1}$ and $ A_iA_{i\plus{}2}$ (the addition of indices being mod 3). Let $ B_i, i \equal{} 1, 2, 3,$ be the second point of intersection of $ C_{i\plus{}1}$ and $ C_{i\plus{}2}.$ Prove that the circumcentres of the triangles $ A_1 B_1I,A_2B_2I,A_3B_3I$ are collinear.

1981 IMO, 1

Consider a variable point $P$ inside a given triangle $ABC$. Let $D$, $E$, $F$ be the feet of the perpendiculars from the point $P$ to the lines $BC$, $CA$, $AB$, respectively. Find all points $P$ which minimize the sum \[ {BC\over PD}+{CA\over PE}+{AB\over PF}. \]

2003 National Olympiad First Round, 33

Tags: geometry , incenter
Let $G$ be the intersection of medians of $\triangle ABC$ and $I$ be the incenter of $\triangle ABC$. If $|AB|=c$, $|AC|=b$ and $GI \perp BC$, what is $|BC|$? $ \textbf{(A)}\ \dfrac{b+c}2 \qquad\textbf{(B)}\ \dfrac{b+c}{3} \qquad\textbf{(C)}\ \dfrac{\sqrt{b^2+c^2}}{2} \qquad\textbf{(D)}\ \dfrac{\sqrt{b^2+c^2}}{3\sqrt 2} \qquad\textbf{(E)}\ \text{None of the preceding} $

2022 Yasinsky Geometry Olympiad, 4

Tags: incenter , geometry
The intersection point $I$ of the angles bisectors of the triangle $ABC$ has reflections the points $P,Q,T$ wrt the triangle's sides . It turned out that the circle $s$ circumscribed around of the triangle $PQT$ , passes through the vertex $A$. Find the radius of the circumscribed circle of triangle $ABC$ if $BC = a$. (Gryhoriy Filippovskyi)

2014 Bulgaria National Olympiad, 3

Let $ABCD$ be a quadrilateral inscribed in a circle $k$. $AC$ and $BD$ meet at $E$. The rays $\overrightarrow{CB}, \overrightarrow{DA}$ meet at $F$. Prove that the line through the incenters of $\triangle ABE\,,\, \triangle ABF$ and the line through the incenters of $\triangle CDE\,,\, \triangle CDF$ meet at a point lying on the circle $k$. [i]Proposed by N. Beluhov[/i]

2014 Online Math Open Problems, 26

Let $ABC$ be a triangle with $AB=26$, $AC=28$, $BC=30$. Let $X$, $Y$, $Z$ be the midpoints of arcs $BC$, $CA$, $AB$ (not containing the opposite vertices) respectively on the circumcircle of $ABC$. Let $P$ be the midpoint of arc $BC$ containing point $A$. Suppose lines $BP$ and $XZ$ meet at $M$ , while lines $CP$ and $XY$ meet at $N$. Find the square of the distance from $X$ to $MN$. [i]Proposed by Michael Kural[/i]

2014 Iran Team Selection Test, 6

$I$ is the incenter of triangle $ABC$. perpendicular from $I$ to $AI$ meet $AB$ and $AC$ at ${B}'$ and ${C}'$ respectively . Suppose that ${B}''$ and ${C}''$ are points on half-line $BC$ and $CB$ such that $B{B}''=BA$ and $C{C}''=CA$. Suppose that the second intersection of circumcircles of $A{B}'{B}''$ and $A{C}'{C}''$ is $T$. Prove that the circumcenter of $AIT$ is on the $BC$.

2006 IMO Shortlist, 4

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

2000 239 Open Mathematical Olympiad, 7

The perpendicular bisectors of the sides AB and BC of a triangle ABC meet the lines BC and AB at the points X and Z, respectively. The angle bisectors of the angles XAC and ZCA intersect at a point B'. Similarly, define two points C' and A'. Prove that the points A', B', C' lie on one line through the incenter I of triangle ABC. [i]Extension:[/i] Prove that the points A', B', C' lie on the line OI, where O is the circumcenter and I is the incenter of triangle ABC. Darij

2012 Indonesia TST, 3

Given a cyclic quadrilateral $ABCD$ with the circumcenter $O$, with $BC$ and $AD$ not parallel. Let $P$ be the intersection of $AC$ and $BD$. Let $E$ be the intersection of the rays $AB$ and $DC$. Let $I$ be the incenter of $EBC$ and the incircle of $EBC$ touches $BC$ at $T_1$. Let $J$ be the excenter of $EAD$ that touches $AD$ and the excircle of $EAD$ that touches $AD$ touches $AD$ at $T_2$. Let $Q$ be the intersection between $IT_1$ and $JT_2$. Prove that $O,P,Q$ are collinear.

2020 Middle European Mathematical Olympiad, 3#

Let $ABC$ be an acute scalene triangle with circumcircle $\omega$ and incenter $I$. Suppose the orthocenter $H$ of $BIC$ lies inside $\omega$. Let $M$ be the midpoint of the longer arc $BC$ of $\omega$. Let $N$ be the midpoint of the shorter arc $AM$ of $\omega$. Prove that there exists a circle tangent to $\omega$ at $N$ and tangent to the circumcircles of $BHI$ and $CHI$.

2014 District Olympiad, 3

Tags: incenter , geometry
The points $M, N,$ and $P$ are chosen on the sides $BC, CA$ and $AB$ of the $\Delta ABC$ such that $BM=BP$ and $CM=CN$. The perpendicular dropped from $B$ to $MP$ and the perpendicular dropped from $C$ to $MN$ intersect at $I$. Prove that the angles $\measuredangle{IPA}$ and $\measuredangle{INC}$ are congruent.

2019 JBMO Shortlist, G6

Tags: incenter , geometry
Let $ABC$ be a non-isosceles triangle with incenter $I$. Let $D$ be a point on the segment $BC$ such that the circumcircle of $BID$ intersects the segment $AB$ at $E\neq B$, and the circumcircle of $CID$ intersects the segment $AC$ at $F\neq C$. The circumcircle of $DEF$ intersects $AB$ and $AC$ at the second points $M$ and $N$ respectively. Let $P$ be the point of intersection of $IB$ and $DE$, and let $Q$ be the point of intersection of $IC$ and $DF$. Prove that the three lines $EN, FM$ and $PQ$ are parallel. [i]Proposed by Saudi Arabia[/i]

2008 Mongolia Team Selection Test, 2

The quadrilateral $ ABCD$ inscribed in a circle wich has diameter $ BD$. Let $ A',B'$ are symmetric to $ A,B$ with respect to the line $ BD$ and $ AC$ respectively. If $ A'C \cap BD \equal{} P$ and $ AC\cap B'D \equal{} Q$ then prove that $ PQ \perp AC$