This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2004 Tournament Of Towns, 1

Let us call a triangle rational if each of its angles is a rational number when measured in degrees. Let us call a point inside triangle rational if joining it to the three vertices of the triangle we get three rational triangles. Show that any acute rational triangle contains at least three distinct rational points.

2013 Brazil National Olympiad, 6

The incircle of triangle $ABC$ touches sides $BC, CA$ and $AB$ at points $D, E$ and $F$, respectively. Let $P$ be the intersection of lines $AD$ and $BE$. The reflections of $P$ with respect to $EF, FD$ and $DE$ are $X,Y$ and $Z$, respectively. Prove that lines $AX, BY$ and $CZ$ are concurrent at a point on line $IO$, where $I$ and $O$ are the incenter and circumcenter of triangle $ABC$.

Russian TST 2017, P2

Tags: geometry , incenter
An acute triangle $\triangle ABC$ has incenter $I$, and the incircle hits $BC, CA, AB$ at $D, E, F$. Lines $BI, CI, BC, DI$ hits $EF$ at $K, L, M, Q$ and the line connecting the midpoint of segment $CL$ and $M$ hits the line segment $CK$ at $P$. Prove that $$PQ=\frac{AB \cdot KQ}{BI}$$

2010 Contests, 3

The circle $ \Gamma $ is inscribed to the scalene triangle $ABC$. $ \Gamma $ is tangent to the sides $BC, CA$ and $AB$ at $D, E$ and $F$ respectively. The line $EF$ intersects the line $BC$ at $G$. The circle of diameter $GD$ intersects $ \Gamma $ in $R$ ($ R\neq D $). Let $P$, $Q$ ($ P\neq R , Q\neq R $) be the intersections of $ \Gamma $ with $BR$ and $CR$, respectively. The lines $BQ$ and $CP$ intersects at $X$. The circumcircle of $CDE$ meets $QR$ at $M$, and the circumcircle of $BDF$ meet $PR$ at $N$. Prove that $PM$, $QN$ and $RX$ are concurrent. [i]Author: Arnoldo Aguilar, El Salvador[/i]

1997 Turkey Team Selection Test, 1

In a triangle $ABC$ with a right angle at $A$, $H$ is the foot of the altitude from $A$. Prove that the sum of the inradii of the triangles $ABC$, $ABH$, and $AHC$ is equal to $AH$.

2013 ELMO Shortlist, 1

Let $ABC$ be a triangle with incenter $I$. Let $U$, $V$ and $W$ be the intersections of the angle bisectors of angles $A$, $B$, and $C$ with the incircle, so that $V$ lies between $B$ and $I$, and similarly with $U$ and $W$. Let $X$, $Y$, and $Z$ be the points of tangency of the incircle of triangle $ABC$ with $BC$, $AC$, and $AB$, respectively. Let triangle $UVW$ be the [i]David Yang triangle[/i] of $ABC$ and let $XYZ$ be the [i]Scott Wu triangle[/i] of $ABC$. Prove that the David Yang and Scott Wu triangles of a triangle are congruent if and only if $ABC$ is equilateral. [i]Proposed by Owen Goff[/i]

2018 International Zhautykov Olympiad, 2

Tags: geometry , incenter
Let $N,K,L$ be points on $AB,BC,CA$ such that $CN$ bisector of angle $\angle ACB$ and $AL=BK$.Let $BL\cap AK=P$.If $I,J$ be incenters of triangles $\triangle BPK$ and $\triangle ALP$ and $IJ\cap CN=Q$ prove that $IQ=JP$

2011 Sharygin Geometry Olympiad, 4

Point $D$ lies on the side $AB$ of triangle $ABC$. The circle inscribed in angle $ADC$ touches internally the circumcircle of triangle $ACD$. Another circle inscribed in angle $BDC$ touches internally the circumcircle of triangle $BCD$. These two circles touch segment $CD$ in the same point $X$. Prove that the perpendicular from $X$ to $AB$ passes through the incenter of triangle $ABC$

2001 Saint Petersburg Mathematical Olympiad, 11.5

Let $I$ and $H$ be the incenter and orthocenter of an acute triangle $ABC$. $M$ is the midpoint of arc $AC$ of circumcircle of triangle $ABC$ which does not contain point $B$. If $MI=MH$, find the measure of angle $\angle ABC$. [I]Proposed by F. Bakharev[/i]

2005 Sharygin Geometry Olympiad, 16

We took a non-equilateral acute-angled triangle and marked $4$ wonderful points in it: the centers of the inscribed and circumscribed circles, the center of gravity (the point of intersection of the medians) and the intersection point of altitudes. Then the triangle itself was erased. It turned out that it was impossible to establish which of the centers corresponds to each of the marked points. Find the angles of the triangle

1999 All-Russian Olympiad, 3

The incircle of $\triangle ABC$ touch $AB$,$BC$,$CA$ at $K$,$L$,$M$. The common external tangents to the incircles of $\triangle AMK$,$\triangle BKL$,$\triangle CLM$, distinct from the sides of $\triangle ABC$, are drawn. Show that these three lines are concurrent.

2017 Costa Rica - Final Round, G2

Consider the right triangle $\vartriangle ABC$ right at $A$ and let $D$ be a point on the hypotenuse $BC$. Consider the line that passes through the incenters of $\vartriangle ABD$ and $\vartriangle ACD$, and let $K$ and $ L$ the intersections of said line with $AB$ and $AC$ respectively. Show that if $AK = AL$ then $D$ is the foot of the altitude on the hypotenuse.

2016 Korea National Olympiad, 5

A non-isosceles triangle $\triangle ABC$ has incenter $I$ and the incircle hits $BC, CA, AB$ at $D, E, F$. Let $EF$ hit the circumcircle of $CEI$ at $P \not= E$. Prove that $\triangle ABC = 2 \triangle ABP$.

1999 USAMO, 6

Let $ABCD$ be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle $\omega$ of triangle $BCD$ meets $CD$ at $E$. Let $F$ be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle $ACF$ meet line $CD$ at $C$ and $G$. Prove that the triangle $AFG$ is isosceles.

2012 Tournament of Towns, 7

Let $AH$ be an altitude of an equilateral triangle $ABC$. Let $I$ be the incentre of triangle $ABH$, and let $L, K$ and $J$ be the incentres of triangles $ABI,BCI$ and $CAI$ respectively. Determine $\angle KJL$.

2016 Indonesia TST, 3

Circles $\Omega $ and $\omega $ are tangent at a point $P$ ($\omega $ lies inside $\Omega $). A chord $AB$ of $\Omega $ is tangent to $\omega $ at $C;$ the line $PC$ meets $\Omega $ again at $Q.$ Chords $QR$ and $QS$ of $ \Omega $ are tangent to $\omega .$ Let $I,X,$ and $Y$ be the incenters of the triangles $APB,$ $ARB,$ and $ASB,$ respectively. Prove that $\angle PXI+\angle PYI=90^{\circ }.$

2021 Saudi Arabia Training Tests, 12

Let $ABC$ be a triangle with circumcenter $O$ and incenter $I$, ex-center in angle $A$ is $J$. Denote $D$ as the tangent point of $(I)$ on $BC$ and the angle bisector of angle $A$ cuts $BC$, $(O)$ respectively at $E, F$. The circle $(DEF )$ meets $(O)$ again at $T$. Prove that $AT$ passes through an intersection of $(J)$ and $(DEF )$.

2022 Junior Balkan Team Selection Tests - Moldova, 8

Tags: incenter , geometry , angle
Let $ABC$ be the triangle and $I$ the center of the circle inscribed in this triangle. The point $M$, located on the tangent taken to the point $B$ to the circumscribed circle of the triangle $ABC$, satisfies the relation $AB = MB$. Point $N$, located on the tangent taken to point $C$ to the same circle, satisfies the relation $AC = NC$. Points $M, A$ and $N$ lie on the same side of the line $BC$. Prove that $$\angle BAC + \angle MIN = 180^o.$$

2018 Korea Junior Math Olympiad, 3

Tags: incenter , geometry
Let there be a scalene triangle $ABC$, and denote $M$ by the midpoint of $BC$. The perpendicular bisector of $BC$ meets the circumcircle of $ABC$ at point $P$, on the same side with $A$ with respect to $BC$. Let the incenters of $ABM$ and $AMC$ be $I,J$, respectively. Let $\angle BAC=\alpha$, $\angle ABC=\beta$, $\angle BCA=\gamma$. Find $\angle IPJ$.

2010 Contests, 2

The orthogonal projections of the vertices $A, B, C$ of the tetrahedron $ABCD$ on the opposite faces are denoted by $A', B', C'$ respectively. Suppose that point $A'$ is the circumcenter of the triangle $BCD$, point $B'$ is the incenter of the triangle $ACD$ and $C'$ is the centroid of the triangle $ABD$. Prove that tetrahedron $ABCD$ is regular.

2003 Turkey MO (2nd round), 2

A circle which is tangent to the sides $ [AB]$ and $ [BC]$ of $ \triangle ABC$ is also tangent to its circumcircle at the point $ T$. If $ I$ is the incenter of $ \triangle ABC$ , show that $ \widehat{ATI}\equal{}\widehat{CTI}$

2015 USA Team Selection Test, 1

Let $ABC$ be a non-isosceles triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$, respectively. Denote by $M$ the midpoint of $\overline{BC}$. Let $Q$ be a point on the incircle such that $\angle AQD = 90^{\circ}$. Let $P$ be the point inside the triangle on line $AI$ for which $MD = MP$. Prove that either $\angle PQE = 90^{\circ}$ or $\angle PQF = 90^{\circ}$. [i]Proposed by Evan Chen[/i]

Geometry Mathley 2011-12, 8.2

Let $ABC$ be a triangle, $d$ a line passing through $A$ and parallel to $BC$. A point $M$ distinct from $A$ is chosen on $d$. $I$ is the incenter of triangle $ABC, K,L$ are the the points of symmetry of $M$ about $IB, IC$. Let $BK$ meet $CL$ at $N$. Prove that $AN$ is tangent to circumcircle of triangle $ABC$. Đỗ Thanh Sơn

2006 National Olympiad First Round, 21

Tags: incenter , geometry
Let $ABC$ be a triangle with $m(\widehat A) = 70^\circ$ and the incenter $I$. If $|BC|=|AC|+|AI|$, then what is $m(\widehat B)$? $ \textbf{(A)}\ 35^\circ \qquad\textbf{(B)}\ 36^\circ \qquad\textbf{(C)}\ 42^\circ \qquad\textbf{(D)}\ 45^\circ \qquad\textbf{(E)}\ \text{None of above} $

2001 Kazakhstan National Olympiad, 2

In the acute triangle $ ABC $, $ L $, $ H $ and $ M $ are the intersection points of bisectors, altitudes and medians, respectively, and $ O $ is the center of the circumscribed circle. Denote by $ X $, $ Y $ and $ Z $ the intersection points of $ AL $, $ BL $ and $ CL $ with a circle, respectively. Let $ N $ be a point on the line $ OL $ such that the lines $ MN $ and $ HL $ are parallel. Prove that $ N $ is the intersection point of the medians of $ XYZ $.