Found problems: 1389
1969 IMO Shortlist, 21
$(FRA 4)$ A right-angled triangle $OAB$ has its right angle at the point $B.$ An arbitrary circle with center on the line $OB$ is tangent to the line $OA.$ Let $AT$ be the tangent to the circle different from $OA$ ($T$ is the point of tangency). Prove that the median from $B$ of the triangle $OAB$ intersects $AT$ at a point $M$ such that $MB = MT.$
2005 Thailand Mathematical Olympiad, 4
Triangle $\vartriangle ABC$ is inscribed in the circle with diameter $BC$. If $AB = 3$, $AC = 4$, and $O$ is the incenter of $\vartriangle ABC$, then find $BO \cdot OC$.
2018 Brazil Team Selection Test, 3
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
2012 USAMTS Problems, 3
In quadrilateral $ABCD$, $\angle DAB=\angle ABC=110^{\circ}$, $\angle BCD=35^{\circ}$, $\angle CDA=105^{\circ}$, and $AC$ bisects $\angle DAB$. Find $\angle ABD$.
2007 All-Russian Olympiad, 6
A line, which passes through the incentre $I$ of the triangle $ABC$, meets its sides $AB$ and $BC$ at the points $M$ and $N$ respectively. The triangle $BMN$ is acute. The points $K,L$ are chosen on the side $AC$ such that $\angle ILA=\angle IMB$ and $\angle KC=\angle INB$. Prove that $AM+KL+CN=AC$.
[i]S. Berlov[/i]
2015 Czech and Slovak Olympiad III A, 5
In given triangle $\triangle ABC$, difference between sizes of each pair of sides is at least $d>0$. Let $G$ and $I$ be the centroid and incenter of $\triangle ABC$ and $r$ be its inradius. Show that $$[AIG]+[BIG]+[CIG]\ge\frac{2}{3}dr,$$ where $[XYZ]$ is (nonnegative) area of triangle $\triangle XYZ$.
2009 China Second Round Olympiad, 1
Let $\omega$ be the circumcircle of acute triangle $ABC$ where $\angle A<\angle B$ and $M,N$ be the midpoints of minor arcs $BC,AC$ of $\omega$ respectively. The line $PC$ is parallel to $MN$, intersecting $\omega$ at $P$ (different from $C$). Let $I$ be the incentre of $ABC$ and let $PI$ intersect $\omega$ again at the point $T$.
1) Prove that $MP\cdot MT=NP\cdot NT$;
2) Let $Q$ be an arbitrary point on minor arc $AB$ and $I,J$ be the incentres of triangles $AQC,BCQ$. Prove that $Q,I,J,T$ are concyclic.
2014 Middle European Mathematical Olympiad, 3
Let $ABC$ be a triangle with $AB < AC$ and incentre $I$. Let $E$ be the point on the side $AC$ such that $AE = AB$. Let $G$ be the point on the line $EI$ such that $\angle IBG = \angle CBA$ and such that $E$ and $G$ lie on opposite sides of $I$.
Prove that the line $AI$, the line perpendicular to $AE$ at $E$, and the bisector of the angle $\angle BGI$ are concurrent.
2007 USAMO, 6
Let $ABC$ be an acute triangle with $\omega,S$, and $R$ being its incircle, circumcircle, and circumradius, respectively. Circle $\omega_{A}$ is tangent internally to $S$ at $A$ and tangent externally to $\omega$. Circle $S_{A}$ is tangent internally to $S$ at $A$ and tangent internally to $\omega$. Let $P_{A}$ and $Q_{A}$ denote the centers of $\omega_{A}$ and $S_{A}$, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that
\[8P_{A}Q_{A}\cdot P_{B}Q_{B}\cdot P_{C}Q_{C}\leq R^{3}\; , \]
with equality if and only if triangle $ABC$ is equilateral.
1998 Estonia National Olympiad, 2
In a triangle $ABC, A_1,B_1,C_1$ are the midpoints of segments $BC,CA,AB, A_2,B_2,C_2$ are the midpoints of segments $B_1C_1,C_1A_1,A_1B_1$, and $A_3,B_3,C_3$ are the incenters of triangles $B_1AC_1,C_1BA_1,A_1CB_1$, respectively. Show that the lines $A_2A_3,B_2B_3$ and $C_2C_3$ are concurrent.
1988 USAMO, 4
Let $I$ be the incenter of triangle $ABC$, and let $A'$, $B'$, and $C'$ be the circumcenters of triangles $IBC$, $ICA$, and $IAB$, respectively. Prove that the circumcircles of triangles $ABC$ and $A'B'C'$ are concentric.
2003 All-Russian Olympiad Regional Round, 9.6
Let $I$ be the intersection point of the bisectors of triangle $ABC$. Let us denote by $A', B', C'$ the points symmetrical to $I$ wrt the sides triangle $ABC$. Prove that if a circle circumscribes around triangle $A'B'C'$ passes through vertex $B$, then $\angle ABC = 60^o$.
2021 Sharygin Geometry Olympiad, 17
Let $ABC$ be an acute-angled triangle. Points $A_0$ and $C_0$ are the midpoints of minor arcs $BC$ and $AB$ respectively. A circle passing though $A_0$ and $C_0$ meet $AB$ and $BC$ at points $P$ and $S$ , $Q$ and $R$ respectively ([i]all these points are distinct[/i]). It is known that $PQ\parallel AC$. Prove that $A_0P+C_0S=C_0Q+A_0R$.
2010 China National Olympiad, 1
Two circles $\Gamma_1$ and $\Gamma_2$ meet at $A$ and $B$. A line through $B$ meets $\Gamma_1$ and $\Gamma_2$ again at $C$ and $D$ repsectively. Another line through $B$ meets $\Gamma_1$ and $\Gamma_2$ again at $E$ and $F$ repsectively. Line $CF$ meets $\Gamma_1$ and $\Gamma_2$ again at $P$ and $Q$ respectively. $M$ and $N$ are midpoints of arc $PB$ and arc $QB$ repsectively. Show that if $CD = EF$, then $C,F,M,N$ are concyclic.
2011 Morocco TST, 3
The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$
[i]Proposed by Nikolay Beluhov, Bulgaria[/i]
2023 Israel TST, P3
Let $ABC$ be an acute-angled triangle with circumcenter $O$ and incenter $I$. The midpoint of arc $BC$ of the circumcircle of $ABC$ not containing $A$ is denoted $S$. Points $E, F$ were chosen on line $OI$ for which $BE$ and $CF$ are both perpendicular to $OI$. Point $X$ was chosen so that $XE\perp AC$ and $XF\perp AB$. Point $Y$ was chosen so that $YE\perp SC$ and $YF\perp SB$. $D$ was chosen on $BC$ so that $DI\perp BC$. Prove that $X$, $Y$, and $D$ are collinear.
2023 Brazil EGMO Team Selection Test, 3
Let $\Delta ABC$ be a triangle and $L$ be the foot of the bisector of $\angle A$. Let $O_1$ and $O_2$ be the circumcenters of $\triangle ABL$ and $\triangle ACL$ respectively and let $B_1$ and $C_1$ be the projections of $C$ and $B$ through the bisectors of the angles $\angle B$ and $\angle C$ respectively. The incircle of $\Delta ABC$ touches $AC$ and $AB$ at points $B_0$ and $C_0$ respectively and the bisectors of angles $\angle B$ and $\angle C$ meet the perpendicular bisector of $AL$ at points $Q$ and $P$ respectively. Prove that the five lines $PC_0, QB_0, O_1C_1, O_2B_1$ and $BC$ are all concurrent.
2009 Croatia Team Selection Test, 3
A triangle $ ABC$ is given with $ \left|AB\right| > \left|AC\right|$. Line $ l$ tangents in a point $ A$ the circumcirle of $ ABC$. A circle centered in $ A$ with radius $ \left|AC\right|$ cuts $ AB$ in the point $ D$ and the line $ l$ in points $ E, F$ (such that $ C$ and $ E$ are in the same halfplane with respect to $ AB$). Prove that the line $ DE$ passes through the incenter of $ ABC$.
2009 Oral Moscow Geometry Olympiad, 6
Fixed two circles $w_1$ and $w_2$, $\ell$ one of their external tangent and $m$ one of their internal tangent . On the line $m$, a point $X$ is chosen, and on the line $\ell$, points $Y$ and $Z$ are constructed so that $XY$ and $XZ$ touch $w_1$ and $w_2$, respectively, and the triangle $XYZ$ contains circles $w_1$ and $w_2$. Prove that the centers of the circles inscribed in triangles $XYZ$ lie on one line.
(P. Kozhevnikov)
2013 Online Math Open Problems, 44
Suppose tetrahedron $PABC$ has volume $420$ and satisfies $AB = 13$, $BC = 14$, and $CA = 15$. The minimum possible surface area of $PABC$ can be written as $m+n\sqrt{k}$, where $m,n,k$ are positive integers and $k$ is not divisible by the square of any prime. Compute $m+n+k$.
[i]Ray Li[/i]
2023 Iran MO (3rd Round), 1
In triangle $\triangle ABC$ , $I$ is the incenter and $M$ is the midpoint of arc $(BC)$ in the circumcircle of $(ABC)$not containing $A$. Let $X$ be an arbitrary point on the external angle bisector of $A$. Let $BX \cap (BIC) = T$. $Y$ lies on $(AXC)$ , different from $A$ , st $MA=MY$ . Prove that $TC || AY$
(Assume that $X$ is not on $(ABC)$ or $BC$)
2010 Mediterranean Mathematics Olympiad, 3
Let $A'\in(BC),$ $B'\in(CA),C'\in(AB)$ be the points of tangency of the excribed circles of triangle $\triangle ABC$ with the sides of $\triangle ABC.$ Let $R'$ be the circumradius of triangle $\triangle A'B'C'.$ Show that \[
R'=\frac{1}{2r}\sqrt{2R\left(2R-h_{a}\right)\left(2R-h_{b}\right)\left(2R-h_{c}\right)}\]
where as usual, $R$ is the circumradius of $\triangle ABC,$ r is the inradius of $\triangle ABC,$ and $h_{a},h_{b},h_{c}$ are the lengths of altitudes of $\triangle ABC.$
Russian TST 2019, P2
Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.
2010 Indonesia TST, 4
Let $ ABC$ be an acute-angled triangle such that there exist points $ D,E,F$ on side $ BC,CA,AB$, respectively such that the inradii of triangle $ AEF,BDF,CDE$ are all equal to $ r_0$. If the inradii of triangle $ DEF$ and $ ABC$ are $ r$ and $ R$, respectively, prove that \[ r\plus{}r_0\equal{}R.\]
[i]Soewono, Bandung[/i]
2009 239 Open Mathematical Olympiad, 2
On the sides $AB, BC$ and $CA$ of triangle $ABC$, points $K, L$ and $M$ are selected, respectively, such that $AK = AM$ and $BK = BL$. If $\angle{MLB} = \angle{CAB}$, Prove that $ML = KI$, where $I$ is the incenter of triangle $CML$.