This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 58

2021 Latvia TST, 2.1

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

1979 IMO Shortlist, 24

A circle $C$ with center $O$ on base $BC$ of an isosceles triangle $ABC$ is tangent to the equal sides $AB,AC$. If point $P$ on $AB$ and point $Q$ on $AC$ are selected such that $PB \times CQ = (\frac{BC}{2})^2$, prove that line segment $PQ$ is tangent to circle $C$, and prove the converse.

Estonia Open Junior - geometry, 1999.1.2

Two different points $X$ and $Y$ are chosen in the plane. Find all the points $Z$ in this plane for which the triangle $XYZ$ is isosceles.

1996 USAMO, 5

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.

2014 Contests, 2 seniors

On the sides of triangle $ABC$, isosceles right-angled triangles $AUB, CVB$, and $AWC$ are placed. These three triangles have their right angles at vertices $U, V$ , and $W$, respectively. Triangle $AUB$ lies completely inside triangle $ABC$ and triangles $CVB$ and $AWC$ lie completely outside $ABC$. See the figure. Prove that quadrilateral $UVCW$ is a parallelogram. [asy] import markers; unitsize(1.5 cm); pair A, B, C, U, V, W; A = (0,0); B = (2,0); C = (1.7,2.5); U = (B + rotate(90,A)*(B))/2; V = (B + rotate(90,C)*(B))/2; W = (C + rotate(90,A)*(C))/2; draw(A--B--C--cycle); draw(A--W, StickIntervalMarker(1,1,size=2mm)); draw(C--W, StickIntervalMarker(1,1,size=2mm)); draw(B--V, StickIntervalMarker(1,2,size=2mm)); draw(C--V, StickIntervalMarker(1,2,size=2mm)); draw(A--U, StickIntervalMarker(1,3,size=2mm)); draw(B--U, StickIntervalMarker(1,3,size=2mm)); draw(rightanglemark(A,U,B,5)); draw(rightanglemark(B,V,C,5)); draw(rightanglemark(A,W,C,5)); dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, N); dot("$U$", U, NE); dot("$V$", V, NE); dot("$W$", W, NW); [/asy]

2012 Bundeswettbewerb Mathematik, 4

From the vertices of a regular 27-gon, seven are chosen arbitrarily. Prove that among these seven points there are three points that form an isosceles triangle or four points that form an isosceles trapezoid.

2011 Sharygin Geometry Olympiad, 3

Restore the isosceles triangle $ABC$ ($AB = AC$) if the common points $I, M, H$ of bisectors, medians and altitudes respectively are given.

2023 India EGMO TST, P6

Let $ABC$ be an isosceles triangle with $AB = AC$. Suppose $P,Q,R$ are points on segments $AC, AB, BC$ respectively such that $AP = QB$, $\angle PBC = 90^\circ - \angle BAC$ and $RP = RQ$. Let $O_1, O_2$ be the circumcenters of $\triangle APQ$ and $\triangle CRP$. Prove that $BR = O_1O_2$. [i]Proposed by Atul Shatavart Nadig[/i]

1997 Tournament Of Towns, (534) 6

Let $P$ be a point inside the triangle $ABC$ such that $AB = BC$, $\angle ABC = 80^o$, $\angle PAC = 40^o$ and $\angle ACP = 30^o$. Find $\angle BPC$. (G Galperin)

2008 Federal Competition For Advanced Students, P1, 4

In a triangle $ABC$ let $E$ be the midpoint of the side $AC$ and $F$ the midpoint of the side $BC$. Let $G$ be the foot of the perpendicular from $C$ to $ AB$. Show that $\vartriangle EFG$ is isosceles if and only if $\vartriangle ABC$ is isosceles.

2014 Hanoi Open Mathematics Competitions, 8

Let $ABC$ be a triangle. Let $D,E$ be the points outside of the triangle so that $AD=AB,AC=AE$ and $\angle DAB =\angle EAC =90^o$. Let $F$ be at the same side of the line $BC$ as $A$ such that $FB = FC$ and $\angle BFC=90^o$. Prove that the triangle $DEF$ is a right- isosceles triangle.

India EGMO 2021 TST, 5

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

2018 Singapore Junior Math Olympiad, 2

In $\vartriangle ABC, AB=AC=14 \sqrt2 , D$ is the midpoint of $CA$ and $E$ is the midpoint of $BD$. Suppose $\vartriangle CDE$ is similar to $\vartriangle ABC$. Find the length of $BD$.

2017 All-Russian Olympiad, 3

In the scalene triangle $ABC$,$\angle ACB=60$ and $\Omega$ is its cirumcirle.On the bisectors of the angles $BAC$ and $CBA$ points $A^\prime$,$B^\prime$ are chosen respectively such that $AB^\prime \parallel BC$ and $BA^\prime \parallel AC$.$A^\prime B^\prime$ intersects with $\Omega$ at $D,E$.Prove that triangle $CDE$ is isosceles.(A. Kuznetsov)

2014 Dutch Mathematical Olympiad, 2 juniors

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be a point on the line $AB$, distinct from $B$, such that $|CG| = |CB|$. Let $H$ be a point on the line $BC$, distinct from $B$, such that $|AB| =|AH|$. Prove that triangle $DGH$ is isosceles. [asy] unitsize(1.5 cm); pair A, B, C, D, G, H; A = (0,0); B = (2,0); D = (0.5,1.5); C = B + D - A; G = reflect(A,B)*(C) + C - B; H = reflect(B,C)*(H) + A - B; draw(H--A--D--C--G); draw(interp(A,G,-0.1)--interp(A,G,1.1)); draw(interp(C,H,-0.1)--interp(C,H,1.1)); draw(D--G--H--cycle, dashed); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, E); dot("$D$", D, NW); dot("$G$", G, NE); dot("$H$", H, SE); [/asy]

2014 Dutch Mathematical Olympiad, 2 seniors

On the sides of triangle $ABC$, isosceles right-angled triangles $AUB, CVB$, and $AWC$ are placed. These three triangles have their right angles at vertices $U, V$ , and $W$, respectively. Triangle $AUB$ lies completely inside triangle $ABC$ and triangles $CVB$ and $AWC$ lie completely outside $ABC$. See the figure. Prove that quadrilateral $UVCW$ is a parallelogram. [asy] import markers; unitsize(1.5 cm); pair A, B, C, U, V, W; A = (0,0); B = (2,0); C = (1.7,2.5); U = (B + rotate(90,A)*(B))/2; V = (B + rotate(90,C)*(B))/2; W = (C + rotate(90,A)*(C))/2; draw(A--B--C--cycle); draw(A--W, StickIntervalMarker(1,1,size=2mm)); draw(C--W, StickIntervalMarker(1,1,size=2mm)); draw(B--V, StickIntervalMarker(1,2,size=2mm)); draw(C--V, StickIntervalMarker(1,2,size=2mm)); draw(A--U, StickIntervalMarker(1,3,size=2mm)); draw(B--U, StickIntervalMarker(1,3,size=2mm)); draw(rightanglemark(A,U,B,5)); draw(rightanglemark(B,V,C,5)); draw(rightanglemark(A,W,C,5)); dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, N); dot("$U$", U, NE); dot("$V$", V, NE); dot("$W$", W, NW); [/asy]

2021 Saudi Arabia IMO TST, 7

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

2019 Yasinsky Geometry Olympiad, p4

Let $ABC$ be a triangle, $O$ is the center of the circle circumscribed around it, $AD$ the diameter of this circle. It is known that the lines $CO$ and $DB$ are parallel. Prove that the triangle $ABC$ is isosceles. (Andrey Mostovy)

2013 Singapore Senior Math Olympiad, 1

In the Triangle ABC AB>AC, the extension of the altitude AD with D lying inside BC intersects the circum-circle of the Triangle ABC at P. The circle through P and tangent to BC at D intersects the circum-circle of Triangle ABC at Q distinct from P with PQ=DQ. Prove that AD=BD-DC

2018 Brazil Team Selection Test, 4

Consider an isosceles triangle $ABC$ with $AB = AC$. Let $\omega(XYZ)$ be the circumcircle of the triangle $XY Z$. The tangents to $\omega(ABC)$ through $B$ and $C$ meet at the point $D$. The point $F$ is marked on the arc $AB$ of $\omega(ABC)$ that does not contain $C$. Let $K$ be the point of intersection of lines $AF$ and $BD$ and $L$ the point of intersection of the lines $AB$ and $CF$. Let $T$ and $S$ be the centers of the circles $\omega(BLC)$ and $\omega(BLK)$, respectively. Suppose that the circles $\omega(BTS)$ and $\omega(CFK)$ are tangent to each other at the point $P$. Prove that $P$ belongs to the line $AB$.

2020 Candian MO, 2#

Let $ABC$ be a triangle, and $M$ an interior point such that $\angle MAB=10^\circ$, $\angle MBA=20^\circ$, $\angle MAC=40^\circ$ and $\angle MCA=30^\circ$. Prove that the triangle is isosceles.

2007 Sharygin Geometry Olympiad, 1

A triangle is cut into several (not less than two) triangles. One of them is isosceles (not equilateral), and all others are equilateral. Determine the angles of the original triangle.

2021 Estonia Team Selection Test, 2

Let $ABC$ be an isosceles triangle with $BC=CA$, and let $D$ be a point inside side $AB$ such that $AD< DB$. Let $P$ and $Q$ be two points inside sides $BC$ and $CA$, respectively, such that $\angle DPB = \angle DQA = 90^{\circ}$. Let the perpendicular bisector of $PQ$ meet line segment $CQ$ at $E$, and let the circumcircles of triangles $ABC$ and $CPQ$ meet again at point $F$, different from $C$. Suppose that $P$, $E$, $F$ are collinear. Prove that $\angle ACB = 90^{\circ}$.

1995 Tuymaada Olympiad, 5

A set consisting of $n$ points of a plane is called an isosceles $n$-point if any three of its points are located in vertices of an isosceles triangle. Find all natural numbers for which there exist isosceles $n$-points.

2016 Thailand Mathematical Olympiad, 4

Each point on the plane is colored either red, green, or blue. Prove that there exists an isosceles triangle whose vertices all have the same color.