Found problems: 300
1997 Singapore Team Selection Test, 1
Let $ABC$ be a triangle and let $D, E$ and $F$ be the midpoints of the sides $AB, BC$ and $CA$ respectively. Suppose that the angle bisector of $\angle BDC$ meets $BC$ at the point $M$ and the angle bisector of $\angle ADC$ meets $AC$ at the point $N$. Let $MN$ and $CD$ intersect at $O$ and let the line $EO$ meet $AC$ at $P$ and the line $FO$ meet $BC$ at $Q$. Prove that $CD = PQ$.
2014 Canadian Mathematical Olympiad Qualification, 6
Given a triangle $A, B, C, X$ is on side $AB$, $Y$ is on side $AC$, and $P$ and $Q$ are on side $BC$ such that $AX = AY , BX = BP$ and $CY = CQ$. Let $XP$ and $YQ$ intersect at $T$. Prove that $AT$ passes through the midpoint of $PQ$.
2005 Sharygin Geometry Olympiad, 3
Given a circle and a point $K$ inside it. An arbitrary circle equal to the given one and passing through the point $K$ has a common chord with the given circle. Find the geometric locus of the midpoints of these chords.
2016 Hanoi Open Mathematics Competitions, 13
Let $H$ be orthocenter of the triangle $ABC$. Let $d_1, d_2$ be lines perpendicular to each-another at $H$. The line $d_1$ intersects $AB, AC$ at $D, E$ and the line d_2 intersects $B C$ at $F$. Prove that $H$ is the midpoint of segment $DE$ if and only if $F$ is the midpoint of segment $BC$.
2011 Silk Road, 2
Given an isosceles triangle $ABC$ with base $AB$. Point $K$ is taken on the extension of the side $AC$ (beyond the point $C$ ) so that $\angle KBC = \angle ABC$. Denote $S$ the intersection point of angle - bisectors of $\angle BKC$ and $\angle ACB$. Lines $AB$ and $KS$ intersect at point $L$, lines $BS$ and $CL$ intersect at point $M$ . Prove that line $KM$ passes through the midpoint of the segment $BC$.
2007 France Team Selection Test, 3
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2013 Czech-Polish-Slovak Junior Match, 5
Point $M$ is the midpoint of the side $AB$ of an acute triangle $ABC$. Point $P$ lies on the segment $AB$, and points $S_1$ and $S_2$ are the centers of the circumcircles of $APC$ and $BPC$, respectively. Show that the midpoint of segment $S_1S_2$ lies on the perpendicular bisector of segment $CM$.
Kyiv City MO Juniors 2003+ geometry, 2010.8.5
In an acute-angled triangle $ABC$, the points $M$ and $N$ are the midpoints of the sides $AB$ and $AC$, respectively. For an arbitrary point $S$ lying on the side of $BC$ prove that the condition holds $(MB- MS)(NC-NS) \le 0$
2018 Saudi Arabia IMO TST, 1
Let $ABC$ be an acute, non isosceles triangle with $M, N, P$ are midpoints of $BC, CA, AB$, respectively. Denote $d_1$ as the line passes through $M$ and perpendicular to the angle bisector of $\angle BAC$, similarly define for $d_2, d_3$. Suppose that $d_2 \cap d_3 = D$, $d_3 \cap d_1 = E,$ $d_1 \cap d_2 = F$. Let $I, H$ be the incenter and orthocenter of triangle $ABC$. Prove that the circumcenter of triangle $DEF$ is the midpoint of segment $IH$.
1990 IMO Shortlist, 9
The incenter of the triangle $ ABC$ is $ K.$ The midpoint of $ AB$ is $ C_1$ and that of $ AC$ is $ B_1.$ The lines $ C_1K$ and $ AC$ meet at $ B_2,$ the lines $ B_1K$ and $ AB$ at $ C_2.$ If the areas of the triangles $ AB_2C_2$ and $ ABC$ are equal, what is the measure of angle $ \angle CAB?$
2018 Oral Moscow Geometry Olympiad, 5
The circle circumscribed about an acute triangle $ABC$ and the vertex $C$ are fixed. Orthocenter $H$ moves in a circle with center at point $C$. Find the locus of the midpoints of the segments connecting the feet of altitudes drawn from vertices $A$ and $B$.
2015 Bosnia and Herzegovina Junior BMO TST, 3
Let $AD$ be an altitude of triangle $ABC$, and let $M$, $N$ and $P$ be midpoints of $AB$, $AD$ and $BC$, respectively. Furthermore let $K$ be a foot of perpendicular from point $D$ to line $AC$, and let $T$ be point on extension of line $KD$ (over point $D$) such that $\mid DT \mid = \mid MN \mid + \mid DK \mid$. If $\mid MP \mid = 2 \cdot \mid KN \mid$, prove that $\mid AT \mid = \mid MC \mid$.
2007 Sharygin Geometry Olympiad, 4
Given a triangle $ABC$. An arbitrary point $P$ is chosen on the circumcircle of triangle $ABH$ ($H$ is the orthocenter of triangle $ABC$). Lines $AP$ and $BP$ meet the opposite sidelines of the triangle at points $A' $ and $B'$, respectively. Determine the locus of midpoints of segments $A'B'$.
2013 Dutch IMO TST, 3
Fix a triangle $ABC$. Let $\Gamma_1$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_2$ the circle through C tangent to edge $AB$ in $A$. The second intersection of $\Gamma_1$ and $\Gamma_2$ is denoted by $D$. The line $AD$ has second intersection $E$ with the circumcircle of $\vartriangle ABC$. Show that $D$ is the midpoint of the segment $AE$.
2017 Thailand Mathematical Olympiad, 2
A cyclic quadrilateral $ABCD$ has circumcenter $O$, its diagonals $AC$ and $BD$ intersect at $G$. Let $P, Q, R, S$ be the circumcenters of $\vartriangle AGB, \vartriangle BGC, \vartriangle CGD, \vartriangle DGA$ respectively. Lines $P R$ and $QS$ intersect at $M$. Show that $M$ is the midpoint of $OG$.
Ukraine Correspondence MO - geometry, 2015.11
Let $ABC$ be an non- isosceles triangle, $H_a$, $H_b$, and $H_c$ be the feet of the altitudes drawn from the vertices $A, B$, and $C$, respectively, and $M_a$, $M_b$, and $M_c$ be the midpoints of the sides $BC$, $CA$, and $AB$, respectively. The circumscribed circles of triangles $AH_bH_c$ and $AM_bM_c$ intersect for second time at point $A'$. The circumscribed circles of triangles $BH_cH_a$ and $BM_cM_a$ intersect for second time at point $B'$. The circumscribed circles of triangles $CH_aH_b$ and $CM_aM_b$ intersect for second time at point $C'$. Prove that points $A', B'$ and $C'$ lie on the same line.
2007 Sharygin Geometry Olympiad, 16
On two sides of an angle, points $A, B$ are chosen. The midpoint $M$ of the segment $AB$ belongs to two lines such that one of them meets the sides of the angle at points $A_1, B_1$, and the other at points $A_2, B_2$. The lines $A_1B_2$ and $A_2B_1$ meet $AB$ at points $P$ and $Q$. Prove that $M$ is the midpoint of $PQ$.
2011 Sharygin Geometry Olympiad, 23
Given are triangle $ABC$ and line $\ell$ intersecting $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. Point $A'$ is the midpoint of the segment between the projections of $A_1$ to $AB$ and $AC$. Points $B'$ and $C'$ are defined similarly.
(a) Prove that $A', B'$ and $C'$ lie on some line $\ell'$.
(b) Suppose $\ell$ passes through the circumcenter of $\triangle ABC$. Prove that in this case $\ell'$ passes through the center of its nine-points circle.
[i]M. Marinov and N. Beluhov[/i]
2014 Indonesia MO Shortlist, G5
Given a cyclic quadrilateral $ABCD$. Suppose $E, F, G, H$ are respectively the midpoint of the sides $AB, BC, CD, DA$. The line passing through $G$ and perpendicular on $AB$ intersects the line passing through $H$ and perpendicular on $BC$ at point $K$. Prove that $\angle EKF = \angle ABC$.
2020 Novosibirsk Oral Olympiad in Geometry, 5
Line $\ell$ is perpendicular to one of the medians of the triangle. The median perpendiculars to the sides of this triangle intersect the line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the other two.
2014 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be an acute triangle and let $O$ be its circumcentre. Now, let the diameter $PQ$ of circle $ABC$ intersects sides $AB$ and $AC$ in their interior at$ D$ and $E$, respectively. Now, let $F$ and $G$ be the midpoints of $CD$ and $BE$. Prove that $\angle FOG=\angle BAC$
2013 Dutch IMO TST, 3
Fix a triangle $ABC$. Let $\Gamma_1$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_2$ the circle through C tangent to edge $AB$ in $A$. The second intersection of $\Gamma_1$ and $\Gamma_2$ is denoted by $D$. The line $AD$ has second intersection $E$ with the circumcircle of $\vartriangle ABC$. Show that $D$ is the midpoint of the segment $AE$.
2016 Novosibirsk Oral Olympiad in Geometry, 4
The two angles of the squares are adjacent, and the extension of the diagonals of one square intersect the diagonal of another square at point $O$ (see figure). Prove that $O$ is the midpoint of $AB$.
[img]https://cdn.artofproblemsolving.com/attachments/7/8/8daaaa55c38e15c4a8ac7492c38707f05475cc.png[/img]
2013 District Olympiad, 3
On the sides $(AB)$ and $(AC)$ of the triangle $ABC$ are considered the points $M$ and $N$ respectively so that $ \angle ABC =\angle ANM$. Point $D$ is symmetric of point $A$ with respect to $B$, and $P$ and $Q$ are the midpoints of the segments $[MN]$ and $[CD]$, respectively. Prove that the points $A, P$ and $Q$ are collinear if and only if $AC = AB \sqrt {2}$
2021 Sharygin Geometry Olympiad, 10-11.2
Let $ABC$ be a scalene triangle, and $A_o$, $B_o,$ $C_o$ be the midpoints of $BC$, $CA$, $AB$ respectively. The bisector of angle $C$ meets $A_oCo$ and $B_oC_o$ at points $B_1$ and $A_1$ respectively. Prove that the lines $AB_1$, $BA_1$ and $A_oB_o$ concur.