This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2007 Today's Calculation Of Integral, 191

(1) For integer $n=0,\ 1,\ 2,\ \cdots$ and positive number $a_{n},$ let $f_{n}(x)=a_{n}(x-n)(n+1-x).$ Find $a_{n}$ such that the curve $y=f_{n}(x)$ touches to the curve $y=e^{-x}.$ (2) For $f_{n}(x)$ defined in (1), denote the area of the figure bounded by $y=f_{0}(x), y=e^{-x}$ and the $y$-axis by $S_{0},$ for $n\geq 1,$ the area of the figure bounded by $y=f_{n-1}(x),\ y=f_{n}(x)$ and $y=e^{-x}$ by $S_{n}.$ Find $\lim_{n\to\infty}(S_{0}+S_{1}+\cdots+S_{n}).$

2003 AMC 10, 6

Many television screens are rectangles that are measured by the length of their diagonals. The ratio of the horizontal length to the height in a standard television screen is $ 4 : 3$. The horizontal length of a “$ 27$-inch” television screen is closest, in inches, to which of the following? [asy]import math; unitsize(7mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((0,0)--(4,0)--(4,3)--(0,3)--(0,0)--(4,3)); fill((0,0)--(4,0)--(4,3)--cycle,mediumgray); label(rotate(aTan(3.0/4.0))*"Diagonal",(2,1.5),NW); label(rotate(90)*"Height",(4,1.5),E); label("Length",(2,0),S);[/asy]$ \textbf{(A)}\ 20 \qquad \textbf{(B)}\ 20.5 \qquad \textbf{(C)}\ 21 \qquad \textbf{(D)}\ 21.5 \qquad \textbf{(E)}\ 22$

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle, and let $D$ be the projection of $A$ on $BC$. Let $M,N$ be the midpoints of $AB$ and $AC$ respectively. Let $\Gamma_1$ and $\Gamma_2$ be the circumcircles of $\triangle BDM$ and $\triangle CDN$ respectively, and let $K$ be the other intersection point of $\Gamma_1$ and $\Gamma_2$. Let $P$ be an arbitrary point on $BC$ and $E,F$ are on $AC$ and $AB$ respectively such that $PEAF$ is a parallelogram. Prove that if $MN$ is a common tangent line of $\Gamma_1$ and $\Gamma_2$, then $K,E,A,F$ are concyclic.

2003 China Team Selection Test, 3

(1) $D$ is an arbitary point in $\triangle{ABC}$. Prove that: \[ \frac{BC}{\min{AD,BD,CD}} \geq \{ \begin{array}{c} \displaystyle 2\sin{A}, \ \angle{A}< 90^o \\ \\ 2, \ \angle{A} \geq 90^o \end{array} \] (2)$E$ is an arbitary point in convex quadrilateral $ABCD$. Denote $k$ the ratio of the largest and least distances of any two points among $A$, $B$, $C$, $D$, $E$. Prove that $k \geq 2\sin{70^o}$. Can equality be achieved?

2003 Belarusian National Olympiad, 3

Two triangles are said to be [i]twins [/i] if one of them is an image of the other one under a parallel projection. Prove that two triangles are twins if and only if either at least a side of one of them equals a side of another or both the triangles have equal segments that connect the corresponding vertices with some points on the opposite sides which divide these sides in the same ratio. (E. Barabanov)

2010 AMC 12/AHSME, 7

Logan is constructing a scaled model of his town. The city's water tower stands $ 40$ meters high, and the top portion is a sphere that holds $ 100,000$ liters of water. Logan's miniature water tower holds $ 0.1$ liters. How tall, in meters, should Logan make his tower? $ \textbf{(A)}\ 0.04\qquad \textbf{(B)}\ \frac{0.4}{\pi}\qquad \textbf{(C)}\ 0.4\qquad \textbf{(D)}\ \frac{4}{\pi}\qquad \textbf{(E)}\ 4$

2013 Math Prize For Girls Problems, 6

Three distinct real numbers form (in some order) a 3-term arithmetic sequence, and also form (in possibly a different order) a 3-term geometric sequence. Compute the greatest possible value of the common ratio of this geometric sequence.

1957 Moscow Mathematical Olympiad, 365

(a) Given a point $O$ inside an equilateral triangle $\vartriangle ABC$. Line $OG$ connects $O$ with the center of mass $G$ of the triangle and intersects the sides of the triangle, or their extensions, at points $A', B', C'$ . Prove that $$\frac{A'O}{A'G} + \frac{B'O}{B'G} + \frac{C'O}{C'G} = 3.$$ (b) Point $G$ is the center of the sphere inscribed in a regular tetrahedron $ABCD$. Straight line $OG$ connecting $G$ with a point $O$ inside the tetrahedron intersects the faces at points $A', B', C', D'$. Prove that $$\frac{A'O}{A'G} + \frac{B'O}{B'G} + \frac{C'O}{C'G}+ \frac{D'O}{D'G} = 4.$$

2019 Bulgaria EGMO TST, 3

In terms of the fixed non-negative integers $\alpha$ and $\beta$ determine the least upper bound of the ratio (or show that it is unbounded) \[ \frac{S(n)}{S(2^{\alpha}5^{\beta}n)} \] as $n$ varies through the positive integers, where $S(\cdot)$ denotes sum of digits in decimal representation.

2005 APMO, 5

In a triangle $ABC$, points $M$ and $N$ are on sides $AB$ and $AC$, respectively, such that $MB = BC = CN$. Let $R$ and $r$ denote the circumradius and the inradius of the triangle $ABC$, respectively. Express the ratio $MN/BC$ in terms of $R$ and $r$.

2011 Romania Team Selection Test, 3

Let $S$ be a finite set of positive integers which has the following property:if $x$ is a member of $S$,then so are all positive divisors of $x$. A non-empty subset $T$ of $S$ is [i]good[/i] if whenever $x,y\in T$ and $x<y$, the ratio $y/x$ is a power of a prime number. A non-empty subset $T$ of $S$ is [i]bad[/i] if whenever $x,y\in T$ and $x<y$, the ratio $y/x$ is not a power of a prime number. A set of an element is considered both [i]good[/i] and [i]bad[/i]. Let $k$ be the largest possible size of a [i]good[/i] subset of $S$. Prove that $k$ is also the smallest number of pairwise-disjoint [i]bad[/i] subsets whose union is $S$.

2012 Brazil Team Selection Test, 1

Let $\phi = \frac{1+\sqrt5}{2}$. Prove that a positive integer appears in the list $$\lfloor \phi \rfloor , \lfloor 2 \phi \rfloor, \lfloor 3\phi \rfloor ,... , \lfloor n\phi \rfloor , ... $$ if and only if it appears exactly twice in the list $$\lfloor 1/ \phi \rfloor , \lfloor 2/ \phi \rfloor, \lfloor 3/\phi \rfloor , ... ,\lfloor n/\phi \rfloor , ... $$

2014 China National Olympiad, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

1987 India National Olympiad, 7

Tags: algebra , ratio , geometry
Construct the $ \triangle ABC$, given $ h_a$, $ h_b$ (the altitudes from $ A$ and $ B$) and $ m_a$, the median from the vertex $ A$.

1998 Tournament Of Towns, 3

$AB$ and $CD$ are segments lying on the two sides of an angle whose vertex is $O$. $A$ is between $O$ and $B$, and $C$ is between $O$ and $D$ . The line connecting the midpoints of the segments $AD$ and $BC$ intersects $AB$ at $M$ and $CD$ at $N$. Prove that $\frac{OM}{ON}=\frac{AB}{CD}$ (V Senderov)

2011 Finnish National High School Mathematics Competition, 1

Tags: geometry , ratio
An equilateral triangle has been drawn inside the circle. Split the triangle to two parts with equal area by a line segment parallel to the triangle side. Draw an inscribed circle inside this smaller triangle. What is the ratio of the area of this circle compared to the area of original circle.

2010 Iran MO (3rd Round), 3

in a quadrilateral $ABCD$ digonals are perpendicular to each other. let $S$ be the intersection of digonals. $K$,$L$,$M$ and $N$ are reflections of $S$ to $AB$,$BC$,$CD$ and $DA$. $BN$ cuts the circumcircle of $SKN$ in $E$ and $BM$ cuts the circumcircle of $SLM$ in $F$. prove that $EFLK$ is concyclic.(20 points)

2020 Czech and Slovak Olympiad III A, 1

Two positive integers $m$ and $n$ are written on the board. We replace one of two numbers in each step on the board by either their sum, or product, or ratio (if it is an integer). Depending on the numbers $m$ and $n$, specify all the pairs that can appear on the board in pairs. (Radovan Švarc)

2006 Putnam, A5

Let $n$ be a positive odd integer and let $\theta$ be a real number such that $\theta/\pi$ is irrational. Set $a_{k}=\tan(\theta+k\pi/n),\ k=1,2\dots,n.$ Prove that \[\frac{a_{1}+a_{2}+\cdots+a_{n}}{a_{1}a_{2}\cdots a_{n}}\] is an integer, and determine its value.

2005 Putnam, A4

Let $H$ be an $n\times n$ matrix all of whose entries are $\pm1$ and whose rows are mutually orthogonal. Suppose $H$ has an $a\times b$ submatrix whose entries are all $1.$ Show that $ab\le n.$

2013 NIMO Problems, 7

Let $a,b,c$ be positive reals satisfying $a^3+b^3+c^3+abc=4$. Prove that \[ \frac{(5a^2+bc)^2}{(a+b)(a+c)} + \frac{(5b^2+ca)^2}{(b+c)(b+a)} + \frac{(5c^2+ab)^2}{(c+a)(c+b)} \ge \frac{(a^3+b^3+c^3+6)^2}{a+b+c} \] and determine the cases of equality. [i]Proposed by Evan Chen[/i]

2014 Harvard-MIT Mathematics Tournament, 10

Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, and $CA = 15$. Let $\Gamma$ be the circumcircle of $ABC$, let $O$ be its circumcenter, and let $M$ be the midpoint of minor arc $BC$. Circle $\omega_1$ is internally tangent to $\Gamma$ at $A$, and circle $\omega_2$, centered at $M$, is externally tangent to $\omega_1$ at a point $T$. Ray $AT$ meets segment $BC$ at point $S$, such that $BS - CS = \dfrac4{15}$. Find the radius of $\omega_2$

2007 AMC 12/AHSME, 22

Two particles move along the edges of equilateral triangle $ \triangle ABC$ in the direction \[ A\rightarrow B\rightarrow C\rightarrow A \]starting simultaneously and moving at the same speed. One starts at $ A$, and the other starts at the midpoint of $ \overline{BC}$. The midpoint of the line segment joining the two particles traces out a path that encloses a region $ R$. What is the ratio of the area of $ R$ to the area of $ \triangle ABC$? $ \textbf{(A)}\ \frac {1}{16}\qquad \textbf{(B)}\ \frac {1}{12}\qquad \textbf{(C)}\ \frac {1}{9}\qquad \textbf{(D)}\ \frac {1}{6}\qquad \textbf{(E)}\ \frac {1}{4}$

2010 Danube Mathematical Olympiad, 2

Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.