This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2004 AIME Problems, 13

Let $ABCDE$ be a convex pentagon with $AB\parallel CE$, $BC\parallel AD$, $AC\parallel DE$, $\angle ABC=120^\circ$, $AB=3$, $BC=5$, and $DE=15$. Given that the ratio between the area of triangle $ABC$ and the area of triangle $EBD$ is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

Indonesia Regional MO OSP SMA - geometry, 2014.4

Tags: geometry , product , ratio
Let $\Gamma$ be the circumcircle of triangle $ABC$. One circle $\omega$is tangent to $\Gamma$ at $A$ and tangent to $BC$ at $N$. Suppose that the extension of $AN$ crosses $\Gamma$ again at $E$. Let $AD$ and $AF$ be respectively the line of altitude $ABC$ and diameter of $\Gamma$, show that $AN \times AE = AD \times AF = AB \times AC$

1950 AMC 12/AHSME, 47

A rectangle inscribed in a triangle has its base coinciding with the base $b$ of the triangle. If the altitude of the triangle is $h$, and the altitude $x$ of the rectangle is half the base of the rectangle, then: $\textbf{(A)}\ x=\dfrac{1}{2}h \qquad \textbf{(B)}\ x=\dfrac{bh}{b+h} \qquad \textbf{(C)}\ x=\dfrac{bh}{2h+b} \qquad \textbf{(D)}\ x=\sqrt{\dfrac{hb}{2}} \qquad \textbf{(E)}\ x=\dfrac{1}{2}b$

2009 Stanford Mathematics Tournament, 7

Tags: geometry , ratio
Four disks with disjoint interiors are mutually tangent. Three of them are equal in size and the fourth one is smaller. Find the ratio of the radius of the smaller disk to one of the larger disks.

Novosibirsk Oral Geo Oly VIII, 2017.6

In trapezoid $ABCD$, diagonal $AC$ is the bisector of angle $A$. Point $K$ is the midpoint of diagonal $AC$. It is known that $DC = DK$. Find the ratio of the bases $AD: BC$.

2006 China Team Selection Test, 1

Two positive valued sequences $\{ a_{n}\}$ and $\{ b_{n}\}$ satisfy: (a): $a_{0}=1 \geq a_{1}$, $a_{n}(b_{n+1}+b_{n-1})=a_{n-1}b_{n-1}+a_{n+1}b_{n+1}$, $n \geq 1$. (b): $\sum_{i=1}^{n}b_{i}\leq n^{\frac{3}{2}}$, $n \geq 1$. Find the general term of $\{ a_{n}\}$.

2011 Putnam, A3

Find a real number $c$ and a positive number $L$ for which \[\lim_{r\to\infty}\frac{r^c\int_0^{\pi/2}x^r\sin x\,dx}{\int_0^{\pi/2}x^r\cos x\,dx}=L.\]

2001 Estonia National Olympiad, 3

Tags: geometry , ratio
Points $D,E$ and $F$ are taken on the sides $BC,CA,AB$ of a triangle $ABC$ respectively so that the segments $AD, BE$ and $CF$ intersect at point $O$. Prove that $\frac{AO}{OD}= \frac{AE}{EC}+\frac{AF}{FB}$ .

VI Soros Olympiad 1999 - 2000 (Russia), 9.7

Tags: geometry , ratio
Points $A, B, C$ and $D$ are located on line $\ell$ so that $\frac{AB}{BC}=\frac{AC}{CD}=\lambda $. A certain circle is tangent to line $\ell$ at point $C$. A line is drawn through $A$ that intersects this circle at points $M$ and $N$ such that the bisector perpendiculars to segments $BM$ and $DN$ intersect at point $Q$ on line $\ell$ . In what ratio does point $Q$ divide segment $AD$?

2016 Sharygin Geometry Olympiad, 6

A triangle ABC with $\angle A = 60^o$ is given. Points $M$ and $N$ on $AB$ and $AC$ respectively are such that the circumcenter of $ABC$ bisects segment $MN$. Find the ratio $AN:MB$. by E.Bakaev

2006 Moldova MO 11-12, 4

Let $ABCDE$ be a right quadrangular pyramid with vertex $E$ and height $EO$. Point $S$ divides this height in the ratio $ES: SO=m$. In which ratio does the plane $(ABC)$ divide the lateral area of the pyramid.

2009 AIME Problems, 15

Let $ \overline{MN}$ be a diameter of a circle with diameter $ 1$. Let $ A$ and $ B$ be points on one of the semicircular arcs determined by $ \overline{MN}$ such that $ A$ is the midpoint of the semicircle and $ MB\equal{}\frac35$. Point $ C$ lies on the other semicircular arc. Let $ d$ be the length of the line segment whose endpoints are the intersections of diameter $ \overline{MN}$ with the chords $ \overline{AC}$ and $ \overline{BC}$. The largest possible value of $ d$ can be written in the form $ r\minus{}s\sqrt{t}$, where $ r$, $ s$, and $ t$ are positive integers and $ t$ is not divisible by the square of any prime. Find $ r\plus{}s\plus{}t$.

2008 Sharygin Geometry Olympiad, 2

(A.Myakishev) Let triangle $ A_1B_1C_1$ be symmetric to $ ABC$ wrt the incenter of its medial triangle. Prove that the orthocenter of $ A_1B_1C_1$ coincides with the circumcenter of the triangle formed by the excenters of $ ABC$.

1967 AMC 12/AHSME, 20

A circle is inscribed in a square of side $m$, then a square is inscribed in that circle, then a circle is inscribed in the latter square, and so on. If $S_n$ is the sum of the areas of the first $n$ circles so inscribed, then, as $n$ grows beyond all bounds, $S_n$ approaches: $\textbf{(A)}\ \frac{\pi m^2}{2}\qquad \textbf{(B)}\ \frac{3\pi m^2}{8}\qquad \textbf{(C)}\ \frac{\pi m^2}{3}\qquad \textbf{(D)}\ \frac{\pi m^2}{4}\qquad \textbf{(E)}\ \frac{\pi m^2}{8}$

2011 Balkan MO Shortlist, G3

Given a triangle $ABC$, let $D$ be the midpoint of the side $AC$ and let $M$ be the point that divides the segment $BD$ in the ratio $1/2$; that is, $MB/MD=1/2$. The rays $AM$ and $CM$ meet the sides $BC$ and $AB$ at points $E$ and $F$, respectively. Assume the two rays perpendicular: $AM\perp CM$. Show that the quadrangle $AFED$ is cyclic if and only if the median from $A$ in triangle $ABC$ meets the line $EF$ at a point situated on the circle $ABC$.

2006 Junior Balkan Team Selection Tests - Romania, 1

Let $ABC$ be a triangle right in $C$ and the points $D, E$ on the sides $BC$ and $CA$ respectively, such that $\frac{BD}{AC} =\frac{AE}{CD} = k$. Lines $BE$ and $AD$ intersect at $O$. Show that the angle $\angle BOD = 60^o$ if and only if $k =\sqrt3$.

Swiss NMO - geometry, 2011.5

Let $\triangle{ABC}$ be a triangle with circumcircle $\tau$. The tangentlines to $\tau$ through $A$ and $B$ intersect at $T$. The circle through $A$, $B$ and $T$ intersects $BC$ and $AC$ again at $D$ and $E$, respectively; $CT$ and $BE$ intersect at $F$. Suppose $D$ is the midpoint of $BC$. Calculate the ratio $BF:BE$. [i](Swiss Mathematical Olympiad 2011, Final round, problem 5)[/i]

1970 IMO Longlists, 39

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

V Soros Olympiad 1998 - 99 (Russia), 9.10

The bisector of angle $\angle BAC$ of triangle $ABC$ intersects arc $BC$ (not containing point $A$) of the circle circumscribed around this triangle at point $P$. Segment $AP$ is divided by side $BC$ in ratio $k$ (counting from vertex $A$). Find the perimeter of triangle $ABC$ if $BC = a$.

2012 Albania National Olympiad, 5

Let $ABC$ be a triangle where $AC\neq BC$. Let $P$ be the foot of the altitude taken from $C$ to $AB$; and let $V$ be the orthocentre, $O$ the circumcentre of $ABC$, and $D$ the point of intersection between the radius $OC$ and the side $AB$. The midpoint of $CD$ is $E$. a) Prove that the reflection $V'$ of $V$ in $AB$ is on the circumcircle of the triangle $ABC$. b) In what ratio does the segment $EP$ divide the segment $OV$?

2009 Tournament Of Towns, 2

A non-square rectangle is cut into $N$ rectangles of various shapes and sizes. Prove that one can always cut each of these rectangles into two rectangles so that one can construct a square and rectangle, each figure consisting of $N$ pieces. [i](6 points)[/i]

1961 IMO, 4

Consider triangle $P_1P_2P_3$ and a point $p$ within the triangle. Lines $P_1P, P_2P, P_3P$ intersect the opposite sides in points $Q_1, Q_2, Q_3$ respectively. Prove that, of the numbers \[ \dfrac{P_1P}{PQ_1}, \dfrac{P_2P}{PQ_2}, \dfrac{P_3P}{PQ_3} \] at least one is $\leq 2$ and at least one is $\geq 2$

2010 Moldova Team Selection Test, 3

Let $ ABC$ be an acute triangle. $ H$ is the orthocenter and $ M$ is the middle of the side $ BC$. A line passing through $ H$ and perpendicular to $ HM$ intersect the segment $ AB$ and $ AC$ in $ P$ and $ Q$. Prove that $ MP \equal{} MQ$

2021 Sharygin Geometry Olympiad, 9.2

A cyclic pentagon is given. Prove that the ratio of its area to the sum of the diagonals is not greater than the quarter of the circumradius.

2013 Sharygin Geometry Olympiad, 6

The altitudes $AA_1, BB_1, CC_1$ of an acute triangle $ABC$ concur at $H$. The perpendicular lines from $H$ to $B_1C_1, A_1C_1$ meet rays $CA, CB$ at $P, Q$ respectively. Prove that the line from $C$ perpendicular to $A_1B_1$ passes through the midpoint of $PQ$.