This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

1999 Tournament Of Towns, 2

$ABC$ is a right-angled triangle. A square $ABDE$ is constructed on the opposite side of the hypothenuse $AB$ from $C$. The bisector of $\angle C$ cuts $DE$ at $F$. If $AC = 1$ and $BC = 3$, compute $\frac{DF}{EF}$. (A Blinkov)

1957 Poland - Second Round, 2

Prove that if $ M $, $ N $, $ P $ are the feet of the altitudes of acute-angled triangle $ ABC $, then the ratio of the perimeter of triangle $ MNP $ to the perimeter of triangle $ ABC $ is equal to the ratio of the radius of the circle inscribed in triangle $ ABC $ to the radius of the circle circumscribed about triangle $ ABC $.

2001 Vietnam National Olympiad, 1

A circle center $O$ meets a circle center $O'$ at $A$ and $B.$ The line $TT'$ touches the first circle at $T$ and the second at $T'$. The perpendiculars from $T$ and $T'$ meet the line $OO'$ at $S$ and $S'$. The ray $AS$ meets the first circle again at $R$, and the ray $AS'$ meets the second circle again at $R'$. Show that $R, B$ and $R'$ are collinear.

2009 AIME Problems, 5

Triangle $ ABC$ has $ AC \equal{} 450$ and $ BC \equal{} 300$. Points $ K$ and $ L$ are located on $ \overline{AC}$ and $ \overline{AB}$ respectively so that $ AK \equal{} CK$, and $ \overline{CL}$ is the angle bisector of angle $ C$. Let $ P$ be the point of intersection of $ \overline{BK}$ and $ \overline{CL}$, and let $ M$ be the point on line $ BK$ for which $ K$ is the midpoint of $ \overline{PM}$. If $ AM \equal{} 180$, find $ LP$.

2010 Contests, 2

Let $ABCD$ be a rectangle of centre $O$, such that $\angle DAC=60^{\circ}$. The angle bisector of $\angle DAC$ meets $DC$ at $S$. Lines $OS$ and $AD$ meet at $L$, and lines $BL$ and $AC$ meet at $M$. Prove that lines $SM$ and $CL$ are parallel.

2008 Tournament Of Towns, 2

There are ten congruent segments on a plane. Each intersection point divides every segment passing through it in the ratio $3:4$. Find the maximum number of intersection points.

Kyiv City MO Juniors Round2 2010+ geometry, 2016.8.1

In a right triangle, the point $O$ is the center of the circumcircle. Another circle of smaller radius centered at the point $O$ touches the larger leg and the altitude drawn from the top of the right angle. Find the acute angles of a right triangle and the ratio of the radii of the circumscribed and smaller circles.

2011 Purple Comet Problems, 24

The diagram below shows a regular hexagon with an inscribed square where two sides of the square are parallel to two sides of the hexagon. There are positive integers $m$, $n$, and $p$ such that the ratio of the area of the hexagon to the area of the square can be written as $\tfrac{m+\sqrt{n}}{p}$ where $m$ and $p$ are relatively prime. Find $m + n + p$. [asy] import graph; size(4cm); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((0,1)--(1,1)--(1.5,1.87)--(1,2.73)--(0,2.73)--(-0.5,1.87)--cycle); filldraw((1.13,2.5)--(-0.13,2.5)--(-0.13,1.23)--(1.13,1.23)--cycle,grey); draw((0,1)--(1,1)); draw((1,1)--(1.5,1.87)); draw((1.5,1.87)--(1,2.73)); draw((1,2.73)--(0,2.73)); draw((0,2.73)--(-0.5,1.87)); draw((-0.5,1.87)--(0,1)); draw((1.13,2.5)--(-0.13,2.5)); draw((-0.13,2.5)--(-0.13,1.23)); draw((-0.13,1.23)--(1.13,1.23)); draw((1.13,1.23)--(1.13,2.5)); [/asy]

2010 Tournament Of Towns, 4

In a school, more than $90\% $ of the students know both English and German, and more than $90\%$ percent of the students know both English and French. Prove that more than $90\%$ percent of the students who know both German and French also know English.

2014 NIMO Problems, 6

10 students are arranged in a row. Every minute, a new student is inserted in the row (which can occur in the front and in the back as well, hence $11$ possible places) with a uniform $\tfrac{1}{11}$ probability of each location. Then, either the frontmost or the backmost student is removed from the row (each with a $\tfrac{1}{2}$ probability). Suppose you are the eighth in the line from the front. The probability that you exit the row from the front rather than the back is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $100m+n$. [i]Proposed by Lewis Chen[/i]

2008 China Girls Math Olympiad, 3

Determine the least real number $ a$ greater than $ 1$ such that for any point $ P$ in the interior of the square $ ABCD$, the area ratio between two of the triangles $ PAB$, $ PBC$, $ PCD$, $ PDA$ lies in the interval $ \left[\frac {1}{a},a\right]$.

2011 AMC 12/AHSME, 22

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

2004 Iran Team Selection Test, 3

Suppose that $ ABCD$ is a convex quadrilateral. Let $ F \equal{} AB\cap CD$, $ E \equal{} AD\cap BC$ and $ T \equal{} AC\cap BD$. Suppose that $ A,B,T,E$ lie on a circle which intersects with $ EF$ at $ P$. Prove that if $ M$ is midpoint of $ AB$, then $ \angle APM \equal{} \angle BPT$.

2010 Iran MO (3rd Round), 6

In a triangle $ABC$, $\angle C=45$. $AD$ is the altitude of the triangle. $X$ is on $AD$ such that $\angle XBC=90-\angle B$ ($X$ is in the triangle). $AD$ and $CX$ cut the circumcircle of $ABC$ in $M$ and $N$ respectively. if tangent to circumcircle of $ABC$ at $M$ cuts $AN$ at $P$, prove that $P$,$B$ and $O$ are collinear.(25 points) the exam time was 4 hours and 30 minutes.

2007 India IMO Training Camp, 3

Tags: algebra , function , ratio
Find all function(s) $f:\mathbb R\to\mathbb R$ satisfying the equation \[f(x+y)+f(x)f(y)=(1+y)f(x)+(1+x)f(y)+f(xy);\] For all $x,y\in\mathbb R.$

2010 AIME Problems, 15

In $ \triangle{ABC}$ with $ AB = 12$, $ BC = 13$, and $ AC = 15$, let $ M$ be a point on $ \overline{AC}$ such that the incircles of $ \triangle{ABM}$ and $ \triangle{BCM}$ have equal radii. Let $ p$ and $ q$ be positive relatively prime integers such that $ \tfrac{AM}{CM} = \tfrac{p}{q}$. Find $ p + q$.

2010 All-Russian Olympiad Regional Round, 10.6

Tags: geometry , circles , ratio
The tangent lines to the circle $\omega$ at points $B$ and $D$ intersect at point $P$. The line passing through $P$ cuts out from circle chord $AC$. Through an arbitrary point on the segment $AC$ a straight line parallel to $BD$ is drawn. Prove that it divides the lengths of polygonal $ABC$ and $ADC$ in the same ratio. [hide=last sentence was in Russian: ]Докажите, что она делит длины ломаных ABC и ADC в одинаковых отношениях. [/hide]

2014 Singapore Senior Math Olympiad, 18

Tags: ratio
Given that in the expansion of $(2+3x)^n$, the coefficients of $x^3$ and $x^4$ are in the ratio $8:15$. Find the value of $n$.

1969 AMC 12/AHSME, 2

Tags: ratio
If an item is sold for $x$ dollars, there is a loss of $15\%$ based on the cost. If, however, the same item is sold for $y$ dollars, there is a profit of $15\%$ based on the cost. The ratio $y:x$ is: $\textbf{(A) }23:17\qquad \textbf{(B) }17y:23\qquad \textbf{(C) }23x:17\qquad$ $\textbf{(D) }\text{dependent upon the cost}\qquad \textbf{(E) }\text{none of these.}$

2011 Flanders Math Olympiad, 2

The area of the ground plane of a truncated cone $K$ is four times as large as the surface of the top surface. A sphere $B$ is circumscribed in $K$, that is to say that $B$ touches both the top surface and the base and the sides. Calculate ratio volume $B :$ Volume $K$.

2007 India IMO Training Camp, 1

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2000 AIME Problems, 8

In trapezoid $ABCD,$ leg $\overline{BC}$ is perpendicular to bases $\overline{AB}$ and $\overline{CD},$ and diagonals $\overline{AC}$ and $\overline{BD}$ are perpendicular. Given that $AB=\sqrt{11}$ and $AD=\sqrt{1001},$ find $BC^2.$

1990 IMO Longlists, 69

Tags: ratio , geometry
Consider the set of cuboids: the three edges $a, b, c$ from a common vertex satisfy the condition \[\frac ab = \frac{a^2}{c^5}\] (i) Prove that there are $100$ pairs of cuboids in this set with equal volumes in each pair. (ii) For each pair of the above cuboids, find the ratio of the sum of their edges.

1952 Moscow Mathematical Olympiad, 212

Prove that if the orthocenter divides all heights of a triangle in the same proportion, the triangle is equilateral.

2012 India Regional Mathematical Olympiad, 5

Tags: midpoint , geometry , ratio
Let $ABC$ be a triangle. Let $E$ be a point on the segment $BC$ such that $BE = 2EC$. Let $F$ be the mid-point of $AC$. Let $BF$ intersect $AE$ in $Q$. Determine $BQ:QF$.