Found problems: 1679
2012 USAJMO, 3
Let $a,b,c$ be positive real numbers. Prove that $\frac{a^3+3b^3}{5a+b}+\frac{b^3+3c^3}{5b+c}+\frac{c^3+3a^3}{5c+a} \geq \frac{2}{3}(a^2+b^2+c^2)$.
2011 AMC 12/AHSME, 13
Triangle $ABC$ has side-lengths $AB=12$, $BC=24$, and $AC=18$. The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N$. What is the perimeter of $\triangle AMN$?
$ \textbf{(A)}\ 27 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 33 \qquad
\textbf{(D)}\ 36 \qquad
\textbf{(E)}\ 42
$
1958 AMC 12/AHSME, 21
In the accompanying figure $ \overline{CE}$ and $ \overline{DE}$ are equal chords of a circle with center $ O$. Arc $ AB$ is a quarter-circle. Then the ratio of the area of triangle $ CED$ to the area of triangle $ AOB$ is:
[asy]defaultpen(linewidth(.8pt));
unitsize(2cm);
pair O = origin;
pair C = (-1,0);
pair D = (1,0);
pair E = (0,1);
pair A = dir(-135);
pair B = dir(-60);
draw(Circle(O,1));
draw(C--E--D--cycle);
draw(A--O--B--cycle);
label("$A$",A,SW);
label("$C$",C,W);
label("$E$",E,N);
label("$D$",D,NE);
label("$B$",B,SE);
label("$O$",O,N);[/asy]
$ \textbf{(A)}\ \sqrt {2} : 1\qquad \textbf{(B)}\ \sqrt {3} : 1\qquad \textbf{(C)}\ 4 : 1\qquad \textbf{(D)}\ 3 : 1\qquad \textbf{(E)}\ 2 : 1$
2010 AMC 10, 14
Triangle $ ABC$ has $ AB \equal{} 2 \cdot AC$. Let $ D$ and $ E$ be on $ \overline{AB}$ and $ \overline{BC}$, respectively, such that $ \angle{BAE} \equal{} \angle{ACD}.$ Let $ F$ be the intersection of segments $ AE$ and $ CD$, and suppose that $ \triangle{CFE}$ is equilateral. What is $ \angle{ACB}$?
$ \textbf{(A)}\ 60^{\circ}\qquad \textbf{(B)}\ 75^{\circ}\qquad \textbf{(C)}\ 90^{\circ}\qquad \textbf{(D)}\ 105^{\circ}\qquad \textbf{(E)}\ 120^{\circ}$
MIPT student olimpiad autumn 2022, 3
How many ways are there (in terms of power) to represent the number 1 as a finite number
or an infinite sum of some subset of the set:
{$\phi^{-n} | n \in Z^+$}
$\phi=\frac{1+\sqrt5}{2}$
1991 AIME Problems, 15
For positive integer $n$, define $S_n$ to be the minimum value of the sum \[ \sum_{k=1}^n \sqrt{(2k-1)^2+a_k^2}, \] where $a_1,a_2,\ldots,a_n$ are positive real numbers whose sum is 17. There is a unique positive integer $n$ for which $S_n$ is also an integer. Find this $n$.
Estonia Open Senior - geometry, 2015.1.3
Let $ABC$ be a triangle. Let $K, L$ and $M$ be points on the sides $BC, AC$ and $AB$, respectively, such that $\frac{|AM|}{|MB|}\cdot \frac{|BK|}{|KC|}\cdot \frac{|CL|}{|LA|} = 1$. Prove that it is possible to choose two triangles out of $ALM, BMK, CKL$ whose inradii sum up to at least the inradius of triangle $ABC$.
2013 Princeton University Math Competition, 4
An equilateral triangle is given. A point lies on the incircle of this triangle. If the smallest two distances from the point to the sides of the triangle is $1$ and $4$, the sidelength of this equilateral triangle can be expressed as $\tfrac{a\sqrt b}c$ where $(a,c)=1$ and $b$ is not divisible by the square of an integer greater than $1$. Find $a+b+c$.
1998 AIME Problems, 12
Let $ABC$ be equilateral, and $D, E,$ and $F$ be the midpoints of $\overline{BC}, \overline{CA},$ and $\overline{AB},$ respectively. There exist points $P, Q,$ and $R$ on $\overline{DE}, \overline{EF},$ and $\overline{FD},$ respectively, with the property that $P$ is on $\overline{CQ}, Q$ is on $\overline{AR},$ and $R$ is on $\overline{BP}.$ The ratio of the area of triangle $ABC$ to the area of triangle $PQR$ is $a+b\sqrt{c},$ where $a, b$ and $c$ are integers, and $c$ is not divisible by the square of any prime. What is $a^{2}+b^{2}+c^{2}$?
2007 AIME Problems, 12
The increasing geometric sequence $x_{0},x_{1},x_{2},\ldots$ consists entirely of integral powers of $3.$ Given that \[\sum_{n=0}^{7}\log_{3}(x_{n}) = 308\qquad\text{and}\qquad 56 \leq \log_{3}\left ( \sum_{n=0}^{7}x_{n}\right ) \leq 57,\] find $\log_{3}(x_{14}).$
1996 AIME Problems, 4
A wooden cube, whose edges are one centimeter long, rests on a horizontal surface. Illuminated by a point source of light that is $x$ centimeters directly above an upper vertex, the cube casts a shadow on the horizontal surface. The area of the shadow, which does not inclued the area beneath the cube is 48 square centimeters. Find the greatest integer that does not exceed $1000x.$
2010 NZMOC Camp Selection Problems, 5
The diagonals of quadrilateral $ABCD$ intersect in point $E$. Given that $|AB| =|CE|$, $|BE| = |AD|$, and $\angle AED = \angle BAD$, determine the ratio $|BC|:|AD|$.
1984 Balkan MO, 2
Let $ABCD$ be a cyclic quadrilateral and let $H_{A}, H_{B}, H_{C}, H_{D}$ be the orthocenters of the triangles $BCD$, $CDA$, $DAB$ and $ABC$ respectively. Show that the quadrilaterals $ABCD$ and $H_{A}H_{B}H_{C}H_{D}$ are congruent.
2007 IMO Shortlist, 6
Determine the smallest positive real number $ k$ with the following property. Let $ ABCD$ be a convex quadrilateral, and let points $ A_1$, $ B_1$, $ C_1$, and $ D_1$ lie on sides $ AB$, $ BC$, $ CD$, and $ DA$, respectively. Consider the areas of triangles $ AA_1D_1$, $ BB_1A_1$, $ CC_1B_1$ and $ DD_1C_1$; let $ S$ be the sum of the two smallest ones, and let $ S_1$ be the area of quadrilateral $ A_1B_1C_1D_1$. Then we always have $ kS_1\ge S$.
[i]Author: Zuming Feng and Oleg Golberg, USA[/i]
2007 QEDMO 5th, 8
Let $ A$, $ B$, $ C$, $ A^{\prime}$, $ B^{\prime}$, $ C^{\prime}$, $ X$, $ Y$, $ Z$, $ X^{\prime}$, $ Y^{\prime}$, $ Z^{\prime}$ and $ P$ be pairwise distinct points in space such that
$ A^{\prime} \in BC;\ B^{\prime}\in CA;\ C^{\prime}\in AB;\ X^{\prime}\in YZ;\ Y^{\prime}\in ZX;\ Z^{\prime}\in XY;$
$ P \in AX;\ P\in BY;\ P\in CZ;\ P\in A^{\prime}X^{\prime};\ P\in B^{\prime}Y^{\prime};\ P\in C^{\prime}Z^{\prime}$.
Prove that
$ \frac {BA^{\prime}}{A^{\prime}C}\cdot\frac {CB^{\prime}}{B^{\prime}A}\cdot\frac {AC^{\prime}}{C^{\prime}B} \equal{} \frac {YX^{\prime}}{X^{\prime}Z}\cdot\frac {ZY^{\prime}}{Y^{\prime}X}\cdot\frac {XZ^{\prime}}{Z^{\prime}Y}$.
1974 AMC 12/AHSME, 30
A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If $ R$ is the ratio of the lesser part to the greater part, then the value of \[ R^{[R^{(R^2\plus{}R^{\minus{}1})}\plus{}R^{\minus{}1}]}\plus{}R^{\minus{}1}\] is
$ \textbf{(A)}\ 2
\qquad \textbf{(B)}\ 2R
\qquad \textbf{(C)}\ R^{\minus{}1}
\qquad \textbf{(D)}\ 2\plus{}R^{\minus{}1}
\qquad \textbf{(E)}\ 2\plus{}R$
1992 AMC 12/AHSME, 11
The ratio of the radii of two concentric circles is $1:3$. If $\overline{AC}$ is a diameter of the larger circle, $\overline{BC}$ is a chord of the larger circle that is tangent to the smaller circle, and $AB = 12$, then the radius of the larger circle is
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair O=origin, A=3*dir(180), B=3*dir(140), C=3*dir(0);
dot(O);
draw(Arc(origin,1,0,360));
draw(Arc(origin,3,0,360));
draw(A--B--C--A);
label("$A$", A, dir(O--A));
label("$B$", B, dir(O--B));
label("$C$", C, dir(O--C));
[/asy]
$ \textbf{(A)}\ 13\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 21\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 26 $
1997 All-Russian Olympiad, 2
Given a convex polygon M invariant under a $90^\circ$ rotation, show that there exist two circles, the ratio of whose radii is $\sqrt2$, one containing M and the other contained in M.
[i]A. Khrabrov[/i]
1995 Turkey MO (2nd round), 4
In a triangle $ABC$ with $AB\neq AC$, the internal and external bisectors of angle $A$ meet the line $BC$ at $D$ and $E$ respectively. If the feet of the perpendiculars from a point $F$ on the circle with diameter $DE$ to $BC,CA,AB$ are $K,L,M$, respectively, show that $KL=KM$.
2019 BMT Spring, 7
Let $\vartriangle ABC$ be an equilateral triangle with side length $M$ such that points $E_1$ and $E_2$ lie on side $AB$, $F_1$ and $F_2$ lie on side $BC$, and $G1$ and $G2$ lie on side $AC$, such that $$m = \overline{AE_1} = \overline{BE_2} = \overline{BF_1} = \overline{CF_2} = \overline{CG_1} = \overline{AG_2}$$ and the area of polygon $E_1E_2F_1F_2G_1G_2$ equals the combined areas of $\vartriangle AE_1G_2$, $\vartriangle BF_1E_2$, and $\vartriangle CG_1F_2$. Find the ratio $\frac{m}{M}$.
[img]https://cdn.artofproblemsolving.com/attachments/a/0/88b36c6550c42d913cdddd4486a3dde251327b.png[/img]
2010 Romanian Master of Mathematics, 3
Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each $i=1, 2, 3, 4$, define $\omega_1$ to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i, A_iA_{i+1}$ and $A_{i+1}A_{i+2}$ (indices are considered modulo $4$ so $A_0=A_4, A_5=A_1$ and $A_6=A_2$). Let $T_i$ be the point of tangency of $\omega_i$ with the side $A_iA_{i+1}$. Prove that the lines $A_1A_2, A_3A_4$ and $T_2T_4$ are concurrent if and only if the lines $A_2A_3, A_4A_1$ and $T_1T_3$ are concurrent.
[i]Pavel Kozhevnikov, Russia[/i]
1997 Flanders Math Olympiad, 3
$\Delta oa_1b_1$ is isosceles with $\angle a_1ob_1 = 36^\circ$. Construct $a_2,b_2,a_3,b_3,...$ as below, with $|oa_{i+1}| = |a_ib_i|$ and $\angle a_iob_i = 36^\circ$, Call the summed area of the first $k$ triangles $A_k$.
Let $S$ be the area of the isocseles triangle, drawn in - - -, with top angle $108^\circ$ and $|oc|=|od|=|oa_1|$, going through the points $b_2$ and $a_2$ as shown on the picture.
(yes, $cd$ is parallel to $a_1b_1$ there)
Show $A_k < S$ for every positive integer $k$.
[img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=284[/img]
2009 AMC 10, 11
How many $ 7$ digit palindromes (numbers that read the same backward as forward) can be formed using the digits $ 2$, $ 2$, $ 3$, $ 3$, $ 5$, $ 5$, $ 5$?
$ \textbf{(A)}\ 6 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 48$
Cono Sur Shortlist - geometry, 2018.G5
We say that a polygon $P$ is inscribed in another polygon $Q$ when all the vertices of $P$ belong to the perimeter of $Q$. We also say in this case that $Q$ is circumscribed to $P$. Given a triangle $T$, let $\ell$ be the largest side of a square inscribed in $T$ and $L$ is the shortest side of a square circumscribed to $T$ . Find the smallest possible value of the ratio $L/\ell$ .
1989 APMO, 3
Let $A_1$, $A_2$, $A_3$ be three points in the plane, and for convenience, let $A_4= A_1$, $A_5 = A_2$. For $n = 1$, $2$, and $3$, suppose that $B_n$ is the midpoint of $A_n A_{n+1}$, and suppose that $C_n$ is the midpoint of $A_n B_n$. Suppose that $A_n C_{n+1}$ and $B_n A_{n+2}$ meet at $D_n$, and that $A_n B_{n+1}$ and $C_n A_{n+2}$ meet at $E_n$.
Calculate the ratio of the area of triangle $D_1 D_2 D_3$ to the area of triangle $E_1 E_2 E_3$.