This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1679

2018 AMC 8, 20

In $\triangle ABC,$ a point $E$ is on $\overline{AB}$ with $AE=1$ and $EB=2.$ Point $D$ is on $\overline{AC}$ so that $\overline{DE} \parallel \overline{BC}$ and point $F$ is on $\overline{BC}$ so that $\overline{EF} \parallel \overline{AC}.$ What is the ratio of the area of $CDEF$ to the area of $\triangle ABC?$ [asy] size(7cm); pair A,B,C,DD,EE,FF; A = (0,0); B = (3,0); C = (0.5,2.5); EE = (1,0); DD = intersectionpoint(A--C,EE--EE+(C-B)); FF = intersectionpoint(B--C,EE--EE+(C-A)); draw(A--B--C--A--DD--EE--FF,black+1bp); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",DD,W); label("$E$",EE,S); label("$F$",FF,NE); label("$1$",(A+EE)/2,S); label("$2$",(EE+B)/2,S); [/asy] $\textbf{(A) } \frac{4}{9} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{5}{9} \qquad \textbf{(D) } \frac{3}{5} \qquad \textbf{(E) } \frac{2}{3}$

2014 Harvard-MIT Mathematics Tournament, 6

In quadrilateral $ABCD$, we have $AB = 5$, $BC = 6$, $CD = 5$, $DA = 4$, and $\angle ABC = 90^\circ$. Let $AC$ and $BD$ meet at $E$. Compute $\dfrac{BE}{ED}$.

1995 India National Olympiad, 4

Let $ABC$ be a triangle and a circle $\Gamma'$ be drawn lying outside the triangle, touching its incircle $\Gamma$ externally, and also the two sides $AB$ and $AC$. Show that the ratio of the radii of the circles $\Gamma'$ and $\Gamma$ is equal to $\tan^ 2 { \left( \dfrac{ \pi - A }{4} \right) }.$

2010 Stanford Mathematics Tournament, 22

Tags: ratio
We need not restrict our number system radix to be an integer. Consider the phinary numeral system in which the radix is the golden ratio $\phi = \frac{1+\sqrt{5}}{2}$ and the digits $0$ and $1$ are used. Compute $1010100_{\phi}-.010101_{\phi}$

2002 Romania Team Selection Test, 3

After elections, every parliament member (PM), has his own absolute rating. When the parliament set up, he enters in a group and gets a relative rating. The relative rating is the ratio of its own absolute rating to the sum of all absolute ratings of the PMs in the group. A PM can move from one group to another only if in his new group his relative rating is greater. In a given day, only one PM can change the group. Show that only a finite number of group moves is possible. [i](A rating is positive real number.)[/i]

1997 Baltic Way, 17

A rectangle can be divided into $n$ equal squares. The same rectangle can also be divided into $n+76$ equal squares. Find $n$.

2009 Korea National Olympiad, 1

Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.

2006 AIME Problems, 9

Circles $\mathcal{C}_1$, $\mathcal{C}_2$, and $\mathcal{C}_3$ have their centers at (0,0), (12,0), and (24,0), and have radii 1, 2, and 4, respectively. Line $t_1$ is a common internal tangent to $\mathcal{C}_1$ and $\mathcal{C}_2$ and has a positive slope, and line $t_2$ is a common internal tangent to $\mathcal{C}_2$ and $\mathcal{C}_3$ and has a negative slope. Given that lines $t_1$ and $t_2$ intersect at $(x,y)$, and that $x=p-q\sqrt{r}$, where $p$, $q$, and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

1969 Vietnam National Olympiad, 4

Two circles centers $O$ and $O'$, radii $R$ and $R'$, meet at two points. A variable line $L$ meets the circles at $A, C, B, D$ in that order and $\frac{AC}{AD} = \frac{CB}{BD}$. The perpendiculars from $O$ and $O'$ to $L$ have feet $H$ and $H'$. Find the locus of $H$ and $H'$. If $OO'^2 < R^2 + R'^2$, find a point $P$ on $L$ such that $PO + PO'$ has the smallest possible value. Show that this value does not depend on the position of $L$. Comment on the case $OO'^2 > R^2 + R'^2$.

2008 China Western Mathematical Olympiad, 2

In triangle $ ABC$, $ AB\equal{}AC$, the inscribed circle $ I$ touches $ BC, CA, AB$ at points $ D,E$ and $ F$ respectively. $ P$ is a point on arc $ EF$ opposite $ D$. Line $ BP$ intersects circle $ I$ at another point $ Q$, lines $ EP$, $ EQ$ meet line $ BC$ at $ M, N$ respectively. Prove that (1) $ P, F, B, M$ concyclic (2)$ \frac{EM}{EN} \equal{} \frac{BD}{BP}$ (P.S. Can anyone help me with using GeoGebra, the incircle function of the plugin doesn't work with my computer.)

2016 Nigerian Senior MO Round 2, Problem 2

$PQ$ is a diameter of a circle. $PR$ and $QS$ are chords with intersection at $T$. If $\angle PTQ= \theta$, determine the ratio of the area of $\triangle QTP$ to the area of $\triangle SRT$ (i.e. area of $\triangle QTP$/area of $\triangle SRT$) in terms of trigonometric functions of $\theta$

1953 AMC 12/AHSME, 25

In a geometric progression whose terms are positive, any term is equal to the sum of the next two following terms. then the common ratio is: $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ \text{about }\frac{\sqrt{5}}{2} \qquad\textbf{(C)}\ \frac{\sqrt{5}\minus{}1}{2} \qquad\textbf{(D)}\ \frac{1\minus{}\sqrt{5}}{2} \qquad\textbf{(E)}\ \frac{2}{\sqrt{5}}$

1970 IMO, 1

$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.

2017 Yasinsky Geometry Olympiad, 6

Given a trapezoid $ABCD$ with bases $BC$ and $AD$, with $AD=2 BC$. Let $M$ be the midpoint of $AD, E$ be the intersection point of the sides $AB$ and $CD$, $O$ be the intersection point of $BM$ and $AC, N$ be the intersection point of $EO$ and $BC$. In what ratio, point $N$ divides the segment $BC$?

2013 Purple Comet Problems, 20

Let $z$ be a complex number satisfying $(z+\tfrac{1}{z})(z+\tfrac{1}{z}+1)=1$. Evaluate $(3z^{100}+\tfrac{2}{z^{100}}+1)(z^{100}+\tfrac{2}{z^{100}}+3)$.

2008 Harvard-MIT Mathematics Tournament, 2

Tags: ratio , geometry , inradius
Let $ ABC$ be an equilateral triangle. Let $ \Omega$ be its incircle (circle inscribed in the triangle) and let $ \omega$ be a circle tangent externally to $ \Omega$ as well as to sides $ AB$ and $ AC$. Determine the ratio of the radius of $ \Omega$ to the radius of $ \omega$.

1998 Harvard-MIT Mathematics Tournament, 4

Let $f(x)=1+\dfrac{x}{2}+\dfrac{x^2}{4}+\dfrac{x^3}{8}+\cdots,$ for $-1\leq x \leq 1$. Find $\sqrt{e^{\int\limits_0^1 f(x)dx}}$.

2007 Harvard-MIT Mathematics Tournament, 14

We are given some similar triangles. Their areas are $1^2,3^2,5^2,\cdots,$ and $49^2$. If the smallest triangle has a perimeter of $4$, what is the sum of all the triangles' perimeters?

2005 All-Russian Olympiad, 2

We have an acute-angled triangle $ABC$, and $AA',BB'$ are its altitudes. A point $D$ is chosen on the arc $ACB$ of the circumcircle of $ABC$. If $P=AA'\cap BD,Q=BB'\cap AD$, show that the midpoint of $PQ$ lies on $A'B'$.

2014 Dutch IMO TST, 5

Let $P(x)$ be a polynomial of degree $n \le 10$ with integral coefficients such that for every $k \in \{1, 2, \dots, 10\}$ there is an integer $m$ with $P(m) = k$. Furthermore, it is given that $|P(10) - P(0)| < 1000$. Prove that for every integer $k$ there is an integer $m$ such that $P(m) = k.$

1996 AIME Problems, 6

In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

2007 Federal Competition For Advanced Students, Part 2, 3

The triangle $ ABC$ with the circumcircle $ k(U,r)$ is given. On the extension of the radii $ UA$ a point $ P$ is chosen. The reflection of the line $ PB$ on the line $ BA$ is called $ g$. Likewise the reflection of the line $ PC$ on the line $ CA$ is called $ h$. The intersection of $ g$ and $ h$ is called $ Q$. Find the geometric location of all possible intersections $ Q$, while $ P$ passes through the extension of the radii $ UA$.

2007 AIME Problems, 15

Let $ABC$ be an equilateral triangle, and let $D$ and $F$ be points on sides $BC$ and $AB$, respectively, with $FA=5$ and $CD=2$. Point $E$ lies on side $CA$ such that $\angle DEF = 60^\circ$. The area of triangle $DEF$ is $14\sqrt{3}$. The two possible values of the length of side $AB$ are $p \pm q\sqrt{r}$, where $p$ and $q$ are rational, and $r$ is an integer not divisible by the square of a prime. Find $r$.

1984 AMC 12/AHSME, 7

Tags: ratio
When Dave walks to school, he averages 90 steps per minute, each of his steps 75cm long. It takes him 16 minutes to get to school. His brother, Jack, going to the same school by the same route, averages 100 steps per minute, but his steps are only 60 cm long. How long does it take Jack to get to school? $\textbf{(A) }14 \frac{2}{9}\qquad \textbf{(B) }15\qquad \textbf{(C) }18\qquad \textbf{(D) }20\qquad \textbf{(E) }22 \frac{2}{9}$

2008 Indonesia MO, 3

Tags: geometry , inradius , ratio
Given triangle $ ABC$ with sidelengths $ a,b,c$. Tangents to incircle of $ ABC$ that parallel with triangle's sides form three small triangle (each small triangle has 1 vertex of $ ABC$). Prove that the sum of area of incircles of these three small triangles and the area of incircle of triangle $ ABC$ is equal to $ \frac{\pi (a^{2}\plus{}b^{2}\plus{}c^{2})(b\plus{}c\minus{}a)(c\plus{}a\minus{}b)(a\plus{}b\minus{}c)}{(a\plus{}b\plus{}c)^{3}}$ (hmm,, looks familiar, isn't it? :wink: )