Found problems: 1342
2013 USAMTS Problems, 5
Let $S$ be a planar region. A $\emph{domino-tiling}$ of $S$ is a partition of $S$ into $1\times2$ rectangles. (For example, a $2\times3$ rectangle has exactly $3$ domino-tilings, as shown below.)
[asy]
import graph; size(7cm);
pen dps = linewidth(0.7); defaultpen(dps);
draw((0,0)--(3,0)--(3,2)--(0,2)--cycle, linewidth(2));
draw((4,0)--(4,2)--(7,2)--(7,0)--cycle, linewidth(2));
draw((8,0)--(8,2)--(11,2)--(11,0)--cycle, linewidth(2));
draw((1,0)--(1,2));
draw((2,1)--(3,1));
draw((0,1)--(2,1), linewidth(2));
draw((2,0)--(2,2), linewidth(2));
draw((4,1)--(7,1));
draw((5,0)--(5,2), linewidth(2));
draw((6,0)--(6,2), linewidth(2));
draw((8,1)--(9,1));
draw((10,0)--(10,2));
draw((9,0)--(9,2), linewidth(2));
draw((9,1)--(11,1), linewidth(2));
[/asy]
The rectangles in the partition of $S$ are called $\emph{dominoes}$.
(a) For any given positive integer $n$, find a region $S_n$ with area at most $2n$ that has exactly $n$ domino-tilings.
(b) Find a region $T$ with area less than $50000$ that has exactly $100002013$ domino-tilings.
2001 May Olympiad, 2
Let's take a $ABCD$ rectangle of paper; the side $AB$ measures $5$ cm and the side $BC$ measures $9$ cm.
We do three folds:
1.We take the $AB$ side on the $BC$ side and call $P$ the point on the $BC$ side that coincides with $A$.
A right trapezoid $BCDQ$ is then formed.
2. We fold so that $B$ and $Q$ coincide. A $5$-sided polygon $RPCDQ$ is formed.
3. We fold again by matching $D$ with $C$ and $Q$ with $P$. A new right trapezoid $RPCS$.
After making these folds, we make a cut perpendicular to $SC$ by its midpoint $T$, obtaining the right trapezoid $RUTS$.
Calculate the area of the figure that appears as we unfold the last trapezoid $RUTS$.
2019 Kosovo National Mathematical Olympiad, 5
There are given points with integer coordinate $(m,n)$ such that $1\leq m,n\leq 4$. Two players, Ana and Ben, are playing a game: First Ana color one of the coordinates with red one, then she pass the turn to Ben who color one of the remaining coordinates with yellow one, then this process they repeate again one after other. The game win the first player who can create a rectangle with same color of vertices and the length of sides are positive integer numbers, otherwise the game is a tie. Does there exist a strategy for any of the player to win the game?
2017 Macedonia JBMO TST, 2
In the triangle $ABC$, the medians $AA_1$, $BB_1$, and $CC_1$ are concurrent at a point $T$ such that $BA_1=TA_1$. The points $C_2$ and $B_2$ are chosen on the extensions of $CC_1$ and $BB_2$, respectively, such that
$$C_1C_2 = \frac{CC_1}{3} \quad \text{and} \quad B_1B_2 = \frac{BB_1}{3}.$$
Show that $TB_2AC_2$ is a rectangle.
2008 IMO Shortlist, 1
In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$.
[i]Proposed by Gerhard Woeginger, Netherlands[/i]
2017 Auckland Mathematical Olympiad, 5
A rectangle $ABCD$ is given. On the side $AB$, n different points are chosen strictly between $A$ and $B$. Similarly, $m$ different points are chosen on the side $AD$ between $A$ and $D$. Lines are drawn from the points parallel to the sides. How many rectangles are formed in this way?
An example of a particular rectangle $ABCD$ is shown with a shaded one rectangle that may be formed in this way.
[img]https://cdn.artofproblemsolving.com/attachments/e/4/f7a04300f0c846fb6418d12dc23f5c74b54242.png[/img]
MIPT Undergraduate Contest 2019, 2.3
Let $A$ and $B$ be rectangles in the plane and $f : A \rightarrow B$ be a mapping which is uniform on the interior of $A$, maps the boundary of $A$ homeomorphically to the boundary of $B$ by mapping the sides of $A$ to corresponding sides in $B$. Prove that $f$ is an affine transformation.
2010 Bulgaria National Olympiad, 1
A table $2 \times 2010$ is divided to unit cells. Ivan and Peter are playing the following game. Ivan starts, and puts horizontal $2 \times 1$ domino that covers exactly two unit table cells. Then Peter puts vertical $1 \times 2$ domino that covers exactly two unit table cells. Then Ivan puts horizontal domino. Then Peter puts vertical domino, etc. The person who cannot put his domino will lose the game. Find who have winning strategy.
2003 AMC 10, 23
A regular octagon $ ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ ABEF$?
[asy]unitsize(8mm);
defaultpen(linewidth(.8pt)+fontsize(6pt));
pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5);
draw(A--B--C--D--E--F--G--H--cycle);
label("$A$",A,NNW);
label("$B$",B,NNE);
label("$C$",C,ENE);
label("$D$",D,ESE);
label("$E$",E,SSE);
label("$F$",F,SSW);
label("$G$",G,WSW);
label("$H$",H,WNW);[/asy]$ \textbf{(A)}\ 1\minus{}\frac{\sqrt2}{2} \qquad
\textbf{(B)}\ \frac{\sqrt2}{4} \qquad
\textbf{(C)}\ \sqrt2\minus{}1 \qquad
\textbf{(D)}\ \frac12 \qquad
\textbf{(E)}\ \frac{1\plus{}\sqrt2}{4}$
2002 District Olympiad, 4
Given the rectangle $ABCD$. The points $E ,F$ lie on the segments $(BC) , (DC)$ respectively, such that $\angle DAF = \angle FAE$. Proce that if $DF + BE = AE$ then $ABCD$ is square.
2005 Kurschak Competition, 3
We build a tower of $2\times 1$ dominoes in the following way. First, we place $55$ dominoes on the table such that they cover a $10\times 11$ rectangle; this is the first story of the tower. We then build every new level with $55$ domioes above the exact same $10\times 11$ rectangle. The tower is called [i]stable[/i] if for every non-lattice point of the $10\times 11$ rectangle, we can find a domino that has an inner point above it. How many stories is the lowest [i]stable[/i] tower?
2022 JHMT HS, 4
Consider the rectangle in the coordinate plane with corners $(0, 0)$, $(16, 0)$, $(16, 4)$, and $(0, 4)$. For a constant $x_0 \in [0, 16]$, the curves
\[ \{(x, y) : y = \sqrt{x} \,\text{ and }\, 0 \leq x \leq 16\} \quad \text{and} \quad \{(x_0, y) : 0 \leq y \leq 4\} \]
partition this rectangle into four 2D regions. Over all choices of $x_0$, determine the smallest possible sum of the areas of the bottom-left and top-right 2D regions in this partition.
(The bottom-left region is $\{(x, y) : 0 \leq x < x_0 \,\text{ and }\, 0 \leq y < \sqrt{x}\}$, and the top-right region is $\{(x, y) : x_0 < x \leq 16 \,\text{ and }\, \sqrt{x} < y \leq 4\}$.)
2013 Turkey Team Selection Test, 2
We put pebbles on some unit squares of a $2013 \times 2013$ chessboard such that every unit square contains at most one pebble. Determine the minimum number of pebbles on the chessboard, if each $19\times 19$ square formed by unit squares contains at least $21$ pebbles.
2008 Germany Team Selection Test, 2
Tracey baked a square cake whose surface is dissected in a $ 10 \times 10$ grid. In some of the fields she wants to put a strawberry such that for each four fields that compose a rectangle whose edges run in parallel to the edges of the cake boundary there is at least one strawberry. What is the minimum number of required strawberries?
1984 Brazil National Olympiad, 3
Given a regular dodecahedron of side $a$. Take two pairs of opposite faces: $E, E' $ and $F, F'$. For the pair $E, E'$ take the line joining the centers of the faces and take points $A$ and $C$ on the line each a distance $m$ outside one of the faces. Similarly, take $B$ and $D$ on the line joining the centers of $F, F'$ each a distance $m$ outside one of the faces. Show that $ABCD$ is a rectangle and find the ratio of its side lengths.
2002 Stanford Mathematics Tournament, 2
Upon cutting a certain rectangle in half, you obtain two rectangles that are scaled down versions of the original. What is the ratio of the longer side length to the shorter side length?
1988 IMO Longlists, 40
[b]i.)[/b] Consider a circle $K$ with diameter $AB;$ with circle $L$ tangent to $AB$ and to $K$ and with a circle $M$ tangent to circle $K,$ circle $L$ and $AB.$ Calculate the ration of the area of circle $K$ to the area of circle $M.$
[b]ii.)[/b] In triangle $ABC, AB = AC$ and $\angle CAB = 80^{\circ}.$ If points $D,E$ and $F$ lie on sides $BC, AC$ and $AB,$ respectively and $CE = CD$ and $BF = BD,$ then find the size of $\angle EDF.$
2013 Junior Balkan Team Selection Tests - Moldova, 8
A point $M (x, y)$ of the Cartesian plane of $xOy$ coordinates is called [i]lattice [/i] if it has integer coordinates. Each lattice point is colored red or blue. Prove that in the plan there is at least one rectangle with lattice vertices of the same color.
2006 AMC 12/AHSME, 22
A circle of radius $ r$ is concentric with and outside a regular hexagon of side length 2. The probability that three entire sides of hexagon are visible from a randomly chosen point on the circle is 1/2. What is $ r$?
$ \textbf{(A) } 2\sqrt {2} \plus{} 2\sqrt {3} \qquad \textbf{(B) } 3\sqrt {3} \plus{} \sqrt {2} \qquad \textbf{(C) } 2\sqrt {6} \plus{} \sqrt {3} \qquad \textbf{(D) } 3\sqrt {2} \plus{} \sqrt {6}\\
\textbf{(E) } 6\sqrt {2} \minus{} \sqrt {3}$
2004 Bosnia and Herzegovina Junior BMO TST, 2
A rectangle is divided into $9$ smaller rectangles. The area of four of them is $5, 3, 9$ and $2$, as in the picture below.
(The picture is not at scale.)
[img]https://cdn.artofproblemsolving.com/attachments/8/e/0ccd6f41073f776b62e9ef4522df1f1639ee31.png[/img]
Determine the minimum area of the rectangle. Under what circumstances is it achieved?
2004 Purple Comet Problems, 20
A circle with area $40$ is tangent to a circle with area $10$. Let R be the smallest rectangle containing both circles. The area of $R$ is $\frac{n}{\pi}$. Find $n$.
[asy]
defaultpen(linewidth(0.7)); size(120);
real R = sqrt(40/pi), r = sqrt(10/pi);
draw(circle((0,0), R)); draw(circle((R+r,0), r));
draw((-R,-R)--(-R,R)--(R+2*r,R)--(R+2*r,-R)--cycle);[/asy]
2010 AIME Problems, 8
For a real number $ a$, let $ \lfloor a \rfloor$ denominate the greatest integer less than or equal to $ a$. Let $ \mathcal{R}$ denote the region in the coordinate plane consisting of points $ (x,y)$ such that \[\lfloor x \rfloor ^2 \plus{} \lfloor y \rfloor ^2 \equal{} 25.\] The region $ \mathcal{R}$ is completely contained in a disk of radius $ r$ (a disk is the union of a circle and its interior). The minimum value of $ r$ can be written as $ \tfrac {\sqrt {m}}{n}$, where $ m$ and $ n$ are integers and $ m$ is not divisible by the square of any prime. Find $ m \plus{} n$.
2009 Oral Moscow Geometry Olympiad, 2
A square and a rectangle of the same perimeter have a common corner. Prove that the intersection point of the diagonals of the rectangle lies on the diagonal of the square.
(Yu. Blinkov)
2008 Bosnia And Herzegovina - Regional Olympiad, 1
Given is an acute angled triangle $ \triangle ABC$ with side lengths $ a$, $ b$ and $ c$ (in an usual way) and circumcenter $ O$. Angle bisector of angle $ \angle BAC$ intersects circumcircle at points $ A$ and $ A_{1}$. Let $ D$ be projection of point $ A_{1}$ onto line $ AB$, $ L$ and $ M$ be midpoints of $ AC$ and $ AB$ , respectively.
(i) Prove that $ AD\equal{}\frac{1}{2}(b\plus{}c)$
(ii) If triangle $ \triangle ABC$ is an acute angled prove that $ A_{1}D\equal{}OM\plus{}OL$
Kyiv City MO Juniors 2003+ geometry, 2018.8.3
In the isosceles triangle $ABC$ with the vertex at the point $B$, the altitudes $BH$ and $CL$ are drawn. The point $D$ is such that $BDCH$ is a rectangle. Find the value of the angle $DLH$.
(Bogdan Rublev)